Handler的原理深度解析

什么Handler

 在Android中我们通常在子线程中进行一些耗时操作,然后将执行的结果告诉UI线程,所以Handler是跨线程之间的一种数据传输机制。

Handler正确使用姿势

 通常我们在UI线程中,直接new一个Handler,然后在子线程中创建消息,在发送消息。

private Handler mHandler = new Handler(){
    @Override
    public void handleMessage(@NonNull Message msg) {
        super.handleMessage(msg);
        System.out.println(msg.obj);
    }
};

/**
 * 发送消息
 */
public void sendMessage(View view) {
    Thread thread = new Thread(new Runnable() {
        @Override
        public void run() {
            SystemClock.sleep(3000);
            Message message = Message.obtain();
            message.obj = "I am Main Message";
            mHandler.sendMessage(message);
        }
    });
    thread.start();
}

 但是这种姿势会给我们误导,使我们更加难理解Handler的原理。回归本质,Handler是一种线程之间的数据传输机制,并不只是主线程和子线程。Android系统在启动我们的App的时候,帮助了我们初始化一下东西,导致我们在主线程创建Handler的时候,会省略一下步骤,现在我们通过两个普通子线程进行演示。

public class HandlerActivity extends AppCompatActivity {

    @Override
    protected void onCreate(@Nullable Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_handler);
    }

    Handler mHandleMessageHandler;

    /**
     * 发送消息
     */
    public void sendMessage(View view) {
        //创建线程handleMessage,接受处理message
        Thread handleMessageThread = new Thread(new Runnable() {
            @Override
            public void run() {
                //1.Looper初始化准备
                Looper.prepare();
                //2.创建Handler
                mHandleMessageHandler = new Handler(Looper.myLooper()){
                    @Override
                    public void handleMessage(@NonNull Message msg) {
                        super.handleMessage(msg);
                        System.out.println("I am handleMessage start handler Message");
                        System.out.println(msg.obj);
                        System.out.println("I am "+mHandleMessageHandler.getLooper().toString());
                    }
                };
                //3.Looper循环
                Looper.loop();
            }
        });

        //创建线程sendMessageThread,发送message
        Thread sendMessageThread = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("I am sendMessageThread send Message");
                SystemClock.sleep(3000);
                //4.创建Message
                Message message = Message.obtain();
                message.obj = "I am sendMessageThread Message";
                //5.发送消息
                mHandleMessageHandler.sendMessage(message);
            }
        });
        handleMessageThread.start();
        sendMessageThread.start();
    }
}

//打印日志
 I/System.out: I am sendMessageThread send Message
 I/System.out: I am handleMessage start handler Message
 I/System.out: I am sendMessageThread Message
 I/System.out: I am Looper (Thread-4, tid 28079) {eab3d45}

 上面的一段代码创建了两个线程handleMessageThread和sendMessageThread,handleMessageThread线程处理接收到的线程,sendMessageThread线程睡眠3000秒发送消息。

 通过上面的一个案例发现,发送一个消息有5步:Looper初始化、创建Handler、Looper循环、创建Message和发送消息。

Handler核心原理

 我们将从上面五个步骤进行Handler的源码分析:

Looper的初始化

 Looper是一直从消息队列中轮询获取消息,将取得得消息分配对应的Hander处理。

 通过源码分析Looper的构造方法被私有化,只能通过prepare()方法获取。通过构造方法发现Looper创建的时候,同时也创建了消息队列MessageQueue,这个消息队列用于后面接受消息。

private Looper(boolean quitAllowed) {
    mQueue = new MessageQueue(quitAllowed);
    mThread = Thread.currentThread();
}

private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper(quitAllowed));
}
消息的发送

 通常我们通过sendMessage()、sendEmptyMessage()等方法发送一条消息,这些方法的最后都会走到sendMessageDelayed(@NonNull Message msg, long delayMillis)方法。通过延时时间和当前时间,算出消息要执行的时刻,在调用enqueueMessage方法,记录次消息执行的Handler和消息的workSourceUid,通过消息队列queue调用enqueueMessage(Message msg, long when)方法,根据时间when 插入到消息队列中的对应的位置,下面是对应的源码,可以参考源码观看。

public final boolean sendMessage(@NonNull Message msg) {
    return sendMessageDelayed(msg, 0);
}

public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
    Message msg = Message.obtain();
    msg.what = what;
    return sendMessageDelayed(msg, delayMillis);
}

public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
    if (delayMillis < 0) {
        delayMillis = 0;
    }
    return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}

public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}

private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
        long uptimeMillis) {
    //target是一个Handler对象,将消息指派到相应的handler处理
    msg.target = this;
    msg.workSourceUid = ThreadLocalWorkSource.getUid();

    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis);
}

//根据when时间将消息插入都消息队列的相应的位置
boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) {
        throw new IllegalArgumentException("Message must have a target.");
    }
    if (msg.isInUse()) {
        throw new IllegalStateException(msg + " This message is already in use.");
    }

    synchronized (this) {
        if (mQuitting) {
            IllegalStateException e = new IllegalStateException(
                    msg.target + " sending message to a Handler on a dead thread");
            Log.w(TAG, e.getMessage(), e);
            msg.recycle();
            return false;
        }

        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // Inserted within the middle of the queue.  Usually we don't have to wake
            // up the event queue unless there is a barrier at the head of the queue
            // and the message is the earliest asynchronous message in the queue.
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            nativeWake(mPtr);
        }
    }
    return true;
}
消息的取出

 从上面流程我们已经知道message已经放到消息队列MessageQueue中,那如何从消息队列中取出呢?

 之前我们说过Looper一直轮询从消息队列MessageQueue从取消息,那为什么这么说呢?刚开始演示的案例中说过创建消息有5步,那我们看一下第三部Looper循环。

public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;

    // Make sure the identity of this thread is that of the local process,
    // and keep track of what that identity token actually is.
    Binder.clearCallingIdentity();
    final long ident = Binder.clearCallingIdentity();

    // Allow overriding a threshold with a system prop. e.g.
    // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
    final int thresholdOverride =
            SystemProperties.getInt("log.looper."
                    + Process.myUid() + "."
                    + Thread.currentThread().getName()
                    + ".slow", 0);

    boolean slowDeliveryDetected = false;

    for (;;) {
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }

        // This must be in a local variable, in case a UI event sets the logger
        final Printer logging = me.mLogging;
        if (logging != null) {
            logging.println(">>>>> Dispatching to " + msg.target + " " +
                    msg.callback + ": " + msg.what);
        }
        // Make sure the observer won't change while processing a transaction.
        final Observer observer = sObserver;

        final long traceTag = me.mTraceTag;
        long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
        long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
        if (thresholdOverride > 0) {
            slowDispatchThresholdMs = thresholdOverride;
            slowDeliveryThresholdMs = thresholdOverride;
        }
        final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
        final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);

        final boolean needStartTime = logSlowDelivery || logSlowDispatch;
        final boolean needEndTime = logSlowDispatch;

        if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
            Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
        }

        final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
        final long dispatchEnd;
        Object token = null;
        if (observer != null) {
            token = observer.messageDispatchStarting();
        }
        long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid);
        try {
            msg.target.dispatchMessage(msg);
            if (observer != null) {
                observer.messageDispatched(token, msg);
            }
            dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
        } catch (Exception exception) {
            if (observer != null) {
                observer.dispatchingThrewException(token, msg, exception);
            }
            throw exception;
        } finally {
            ThreadLocalWorkSource.restore(origWorkSource);
            if (traceTag != 0) {
                Trace.traceEnd(traceTag);
            }
        }
        if (logSlowDelivery) {
            if (slowDeliveryDetected) {
                if ((dispatchStart - msg.when) <= 10) {
                    Slog.w(TAG, "Drained");
                    slowDeliveryDetected = false;
                }
            } else {
                if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
                        msg)) {
                    // Once we write a slow delivery log, suppress until the queue drains.
                    slowDeliveryDetected = true;
                }
            }
        }
        if (logSlowDispatch) {
            showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
        }

        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }

        // Make sure that during the course of dispatching the
        // identity of the thread wasn't corrupted.
        final long newIdent = Binder.clearCallingIdentity();
        if (ident != newIdent) {
            Log.wtf(TAG, "Thread identity changed from 0x"
                    + Long.toHexString(ident) + " to 0x"
                    + Long.toHexString(newIdent) + " while dispatching to "
                    + msg.target.getClass().getName() + " "
                    + msg.callback + " what=" + msg.what);
        }

        msg.recycleUnchecked();
    }
}

 loop()方法虽然很多代码,但是我们真正关心的也就几句核心代码,精简如下:

public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;
    
     .....

    for (;;) {
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }
        
        .....
        
        try {
            msg.target.dispatchMessage(msg);
            
            .....
            
        }

        .....
        //重置消息状态
        msg.recycleUnchecked();
    }
}

 首先获取当前Looper对象,判断looper是否存在,在获取当前Looper对应的消息队列MessageQueue,死循环这个队列,取出队列中的每一个消息,如果消息msg不为空,通过消息的target(实际就是Hander),找到需要处理消息的Handler。

public void dispatchMessage(@NonNull Message msg) {
    if (msg.callback != null) {
        handleCallback(msg);
    } else {
        if (mCallback != null) {
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        handleMessage(msg);
    }
}

 根据Hander中的dispatchMessage(@NonNull Message msg) 源码可知,如果msg没有设置回调callback,会走else逻辑;这里判断mCallback是否为空,如果不为空,会走到mCallback的handleMessage()方法,否则走handleMessage(Message msg)。mCallback为Handler的Callback类型的成员变量,它是在Handler构造方法赋值。

  • 创建Handler的时候,添加了CallBack参数,最后会走到CallBack的handleMessage方法中。
private Handler mHandler = new Handler(new Handler.Callback() {
    //实现Callback中的handleMessage方法
    @Override
    public boolean handleMessage(@NonNull Message msg) {
        
        return false;
    }
});
  • 如果没有设置CallBack(),最后我们会走到Handler的handleMessage方法总,那我们只需要重写handleMessage方法即可。
private Handler mHandler = new Handler(){
    //重写Handler中的handleMessage方法
    @Override
    public void handleMessage(@NonNull Message msg) {
        super.handleMessage(msg);
    }
};

 以上分析就是Handler的原理,它主要由Handler、Message、Looper、MessageQueue四个类来完成消息的传递过程。Handler主要负责处理Message,Looper主要负责管理消息队列MessageQueue和分发消息,MessageQueue主要按照消息执行的时间点来排列和管理消息。

猜你喜欢

转载自blog.csdn.net/blue_rose_L/article/details/106291199