玩转移远SC60 Android开发板------(3)SPI转CAN总线

SC60开发板默认是不支持CAN接口的,需要外接转换芯片,选取MICROCHIP的MCP25625这一款。

芯片特点如下:
• Stand-Alone CAN 2.0B Controller with Integrated CAN Transceiver and Serial Peripheral
Interface (SPI)
• Up to 1 Mb/s Operation
• Very Low Standby Current (10 μA, typical)
• Up to 10 MHz SPI Clock Speed
• Interfaces Directly with Microcontrollers with 2.7V to 5.5V I/Os
• Available in SSOP-28L and 6x6 QFN-28L
• Temperature Ranges: - Extended (E): -40°C to +125°C
最主要的特点是集成了Transceiver,避免了外接Transceiver的电路,设计简单。

参考原理图:
在这里插入图片描述
osc1接8M晶振,CANL和CANH连接到外部CAN网络,串联120欧的阻抗匹配,使用4线SPI和主控通讯。

驱动参考:

/*
 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
 *
 * MCP2510 support and bug fixes by Christian Pellegrin
 * <[email protected]>
 *
 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
 *
 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
 * Written under contract by:
 *   Chris Elston, Katalix Systems, Ltd.
 *
 * Based on Microchip MCP251x CAN controller driver written by
 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
 *
 * Based on CAN bus driver for the CCAN controller written by
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
 * - Simon Kallweit, intefo AG
 * Copyright 2007
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the version 2 of the GNU General Public License
 * as published by the Free Software Foundation
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *
 *
 * Your platform definition file should specify something like:
 *
 * static struct mcp251x_platform_data mcp251x_info = {
 *         .oscillator_frequency = 8000000,
 *         .board_specific_setup = &mcp251x_setup,
 *         .power_enable = mcp251x_power_enable,
 *         .transceiver_enable = NULL,
 * };
 *
 * static struct spi_board_info spi_board_info[] = {
 *         {
 *                 .modalias = "mcp2510",
 *			// or "mcp2515" depending on your controller
 *                 .platform_data = &mcp251x_info,
 *                 .irq = IRQ_EINT13,
 *                 .max_speed_hz = 2*1000*1000,
 *                 .chip_select = 2,
 *         },
 * };
 *
 * Please see mcp251x.h for a description of the fields in
 * struct mcp251x_platform_data.
 *
 */

#include <linux/can/core.h>
#include <linux/can/dev.h>
#include <linux/can/led.h>
#include <linux/can/platform/mcp251x.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/freezer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/uaccess.h>
//stone added
#include <linux/of_gpio.h>


/* SPI interface instruction set */
#define INSTRUCTION_WRITE	0x02
#define INSTRUCTION_READ	0x03
#define INSTRUCTION_BIT_MODIFY	0x05
#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
#define INSTRUCTION_RESET	0xC0
#define RTS_TXB0		0x01
#define RTS_TXB1		0x02
#define RTS_TXB2		0x04
#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))


/* MPC251x registers */
#define CANSTAT	      0x0e
#define CANCTRL	      0x0f
#  define CANCTRL_REQOP_MASK	    0xe0
#  define CANCTRL_REQOP_CONF	    0x80
#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
#  define CANCTRL_REQOP_LOOPBACK    0x40
#  define CANCTRL_REQOP_SLEEP	    0x20
#  define CANCTRL_REQOP_NORMAL	    0x00
#  define CANCTRL_OSM		    0x08
#  define CANCTRL_ABAT		    0x10
#define TEC	      0x1c
#define REC	      0x1d
#define CNF1	      0x2a
#  define CNF1_SJW_SHIFT   6
#define CNF2	      0x29
#  define CNF2_BTLMODE	   0x80
#  define CNF2_SAM         0x40
#  define CNF2_PS1_SHIFT   3
#define CNF3	      0x28
#  define CNF3_SOF	   0x08
#  define CNF3_WAKFIL	   0x04
#  define CNF3_PHSEG2_MASK 0x07
#define CANINTE	      0x2b
#  define CANINTE_MERRE 0x80
#  define CANINTE_WAKIE 0x40
#  define CANINTE_ERRIE 0x20
#  define CANINTE_TX2IE 0x10
#  define CANINTE_TX1IE 0x08
#  define CANINTE_TX0IE 0x04
#  define CANINTE_RX1IE 0x02
#  define CANINTE_RX0IE 0x01
#define CANINTF	      0x2c
#  define CANINTF_MERRF 0x80
#  define CANINTF_WAKIF 0x40
#  define CANINTF_ERRIF 0x20
#  define CANINTF_TX2IF 0x10
#  define CANINTF_TX1IF 0x08
#  define CANINTF_TX0IF 0x04
#  define CANINTF_RX1IF 0x02
#  define CANINTF_RX0IF 0x01
#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
#  define CANINTF_ERR (CANINTF_ERRIF)
#define EFLG	      0x2d
#  define EFLG_EWARN	0x01
#  define EFLG_RXWAR	0x02
#  define EFLG_TXWAR	0x04
#  define EFLG_RXEP	0x08
#  define EFLG_TXEP	0x10
#  define EFLG_TXBO	0x20
#  define EFLG_RX0OVR	0x40
#  define EFLG_RX1OVR	0x80
#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
#  define TXBCTRL_ABTF	0x40
#  define TXBCTRL_MLOA	0x20
#  define TXBCTRL_TXERR 0x10
#  define TXBCTRL_TXREQ 0x08
#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
#  define SIDH_SHIFT    3
#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
#  define SIDL_SID_MASK    7
#  define SIDL_SID_SHIFT   5
#  define SIDL_EXIDE_SHIFT 3
#  define SIDL_EID_SHIFT   16
#  define SIDL_EID_MASK    3
#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
#  define DLC_RTR_SHIFT    6
#define TXBCTRL_OFF 0
#define TXBSIDH_OFF 1
#define TXBSIDL_OFF 2
#define TXBEID8_OFF 3
#define TXBEID0_OFF 4
#define TXBDLC_OFF  5
#define TXBDAT_OFF  6
#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
#  define RXBCTRL_BUKT	0x04
#  define RXBCTRL_RXM0	0x20
#  define RXBCTRL_RXM1	0x40
#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
#  define RXBSIDH_SHIFT 3
#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
#  define RXBSIDL_IDE   0x08
#  define RXBSIDL_SRR   0x10
#  define RXBSIDL_EID   3
#  define RXBSIDL_SHIFT 5
#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
#  define RXBDLC_LEN_MASK  0x0f
#  define RXBDLC_RTR       0x40
#define RXBCTRL_OFF 0
#define RXBSIDH_OFF 1
#define RXBSIDL_OFF 2
#define RXBEID8_OFF 3
#define RXBEID0_OFF 4
#define RXBDLC_OFF  5
#define RXBDAT_OFF  6
#define RXFSIDH(n) ((n) * 4)
#define RXFSIDL(n) ((n) * 4 + 1)
#define RXFEID8(n) ((n) * 4 + 2)
#define RXFEID0(n) ((n) * 4 + 3)
#define RXMSIDH(n) ((n) * 4 + 0x20)
#define RXMSIDL(n) ((n) * 4 + 0x21)
#define RXMEID8(n) ((n) * 4 + 0x22)
#define RXMEID0(n) ((n) * 4 + 0x23)

#define GET_BYTE(val, byte)			\
	(((val) >> ((byte) * 8)) & 0xff)
#define SET_BYTE(val, byte)			\
	(((val) & 0xff) << ((byte) * 8))

/*
 * Buffer size required for the largest SPI transfer (i.e., reading a
 * frame)
 */
#define CAN_FRAME_MAX_DATA_LEN	8
#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
#define CAN_FRAME_MAX_BITS	128

#define TX_ECHO_SKB_MAX	1

#define DEVICE_NAME "mcp25625"

static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
module_param(mcp251x_enable_dma, int, S_IRUGO);
MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");

static const struct can_bittiming_const mcp251x_bittiming_const = {
	.name = DEVICE_NAME,
	.tseg1_min = 3,
	.tseg1_max = 16,
	.tseg2_min = 2,
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 64,
	.brp_inc = 1,
};

enum mcp251x_model {
	CAN_MCP251X_MCP2510	= 0x2510,
	CAN_MCP251X_MCP2515	= 0x2515,
};

struct mcp251x_priv {
	struct can_priv	   can;
	struct net_device *net;
	struct spi_device *spi;
	enum mcp251x_model model;

	struct mutex mcp_lock; /* SPI device lock */

	u8 *spi_tx_buf;
	u8 *spi_rx_buf;
	dma_addr_t spi_tx_dma;
	dma_addr_t spi_rx_dma;

	struct sk_buff *tx_skb;
	int tx_len;

	struct workqueue_struct *wq;
	struct work_struct tx_work;
	struct work_struct restart_work;

	//stone added
    struct work_struct irq_work;

	int force_quit;
	int after_suspend;
#define AFTER_SUSPEND_UP 1
#define AFTER_SUSPEND_DOWN 2
#define AFTER_SUSPEND_POWER 4
#define AFTER_SUSPEND_RESTART 8
	int restart_tx;
};

#define MCP251X_IS(_model) \
static inline int mcp251x_is_##_model(struct spi_device *spi) \
{ \
	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
	return priv->model == CAN_MCP251X_MCP##_model; \
}

MCP251X_IS(2510);
MCP251X_IS(2515);



//Begin:stone added
static struct mcp251x_platform_data mcp251x_info = {
	.oscillator_frequency = 8000000,
	//.board_specific_setup = &mcp251x_setup,
	//.power_enable = mcp251x_power_enable,
	.transceiver_enable = NULL,
};
//End:stone added

static void mcp251x_clean(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);

	if (priv->tx_skb || priv->tx_len)
		net->stats.tx_errors++;
	if (priv->tx_skb)
		dev_kfree_skb(priv->tx_skb);
	if (priv->tx_len)
		can_free_echo_skb(priv->net, 0);
	priv->tx_skb = NULL;
	priv->tx_len = 0;
}

/*
 * Note about handling of error return of mcp251x_spi_trans: accessing
 * registers via SPI is not really different conceptually than using
 * normal I/O assembler instructions, although it's much more
 * complicated from a practical POV. So it's not advisable to always
 * check the return value of this function. Imagine that every
 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 * error();", it would be a great mess (well there are some situation
 * when exception handling C++ like could be useful after all). So we
 * just check that transfers are OK at the beginning of our
 * conversation with the chip and to avoid doing really nasty things
 * (like injecting bogus packets in the network stack).
 */
static int mcp251x_spi_trans(struct spi_device *spi, int len)
{
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
	struct spi_transfer t = {
		.tx_buf = priv->spi_tx_buf,
		.rx_buf = priv->spi_rx_buf,
		.len = len,
		.cs_change = 0,
	};
	struct spi_message m;
	int ret;

	spi_message_init(&m);

	if (mcp251x_enable_dma) {
		t.tx_dma = priv->spi_tx_dma;
		t.rx_dma = priv->spi_rx_dma;
		m.is_dma_mapped = 1;
	}

	spi_message_add_tail(&t, &m);

	ret = spi_sync(spi, &m);
	if (ret)
		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
	return ret;
}

static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
{
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
	u8 val = 0;

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 3);
	val = priv->spi_rx_buf[2];

	return val;
}

static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
		uint8_t *v1, uint8_t *v2)
{
	struct mcp251x_priv *priv = spi_get_drvdata(spi);

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 4);

	*v1 = priv->spi_rx_buf[2];
	*v2 = priv->spi_rx_buf[3];
}

static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
{
	struct mcp251x_priv *priv = spi_get_drvdata(spi);

	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = val;

	mcp251x_spi_trans(spi, 3);
}

static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
			       u8 mask, uint8_t val)
{
	struct mcp251x_priv *priv = spi_get_drvdata(spi);

	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = mask;
	priv->spi_tx_buf[3] = val;

	mcp251x_spi_trans(spi, 4);
}

static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
				int len, int tx_buf_idx)
{
	struct mcp251x_priv *priv = spi_get_drvdata(spi);

	//stone added
	dev_err(&spi->dev, "-----mcp251x_hw_tx_frame-----");

	//stone modify 
	if (mcp251x_is_2510(spi)) {
	//if(1){
		int i;

		for (i = 1; i < TXBDAT_OFF + len; i++)
			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
					  buf[i]);
	}

	else {
		//stone added
		dev_err(&spi->dev, "-----mcp251x_hw_tx_frame else-----");
		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
	}
}

static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
			  int tx_buf_idx)
{
	//stone delete
	//struct mcp251x_priv *priv = spi_get_drvdata(spi);
	u32 sid, eid, exide, rtr;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	dev_err(&spi->dev, "-----mcp251x_hw_tx-----");

	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
	if (exide)
		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
	else
		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
	
	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */

	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
		(exide << SIDL_EXIDE_SHIFT) |
		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
	
	//stone added this line
    mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);//请求发送tx0
    
	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
	//stone delete
	//priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
	//mcp251x_spi_trans(priv->spi, 1);
}

static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
				int buf_idx)
{
	struct mcp251x_priv *priv = spi_get_drvdata(spi);

	if (mcp251x_is_2510(spi)) {
		int i, len;

		for (i = 1; i < RXBDAT_OFF; i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);

		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
		for (; i < (RXBDAT_OFF + len); i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
	} else {
		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
	}
}

static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
{
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
	struct sk_buff *skb;
	struct can_frame *frame;
	u8 buf[SPI_TRANSFER_BUF_LEN];
	
	//stone added debug
    int i;

	skb = alloc_can_skb(priv->net, &frame);
	if (!skb) {
		dev_err(&spi->dev, "cannot allocate RX skb\n");
		priv->net->stats.rx_dropped++;
		return;
	}

	mcp251x_hw_rx_frame(spi, buf, buf_idx);
	
	//Begin:stone added debug for rx data  
	dev_err(&spi->dev, "buf_idx=%d\n",buf_idx);
    for(i=0; i<SPI_TRANSFER_BUF_LEN; i++)
    {
    	dev_err(&spi->dev, "buf[%d]=%x\n",i,buf[i]);
    }
	//End:stone added debug for rx data  
	
	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
		/* Extended ID format */
		frame->can_id = CAN_EFF_FLAG;
		frame->can_id |=
			/* Extended ID part */
			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
			SET_BYTE(buf[RXBEID8_OFF], 1) |
			SET_BYTE(buf[RXBEID0_OFF], 0) |
			/* Standard ID part */
			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
		/* Remote transmission request */
		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
			frame->can_id |= CAN_RTR_FLAG;
	} else {
		/* Standard ID format */
		frame->can_id =
			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
			frame->can_id |= CAN_RTR_FLAG;
	}
	/* Data length */
	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);

	priv->net->stats.rx_packets++;
	priv->net->stats.rx_bytes += frame->can_dlc;

	can_led_event(priv->net, CAN_LED_EVENT_RX);

	netif_rx_ni(skb);
}

static void mcp251x_hw_sleep(struct spi_device *spi)
{
	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
}

static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
					   struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;

	if (priv->tx_skb || priv->tx_len) {
		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
		return NETDEV_TX_BUSY;
	}

	if (can_dropped_invalid_skb(net, skb))
		return NETDEV_TX_OK;

	netif_stop_queue(net);
	priv->tx_skb = skb;
	queue_work(priv->wq, &priv->tx_work);

	return NETDEV_TX_OK;
}

static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
{
	struct mcp251x_priv *priv = netdev_priv(net);

	switch (mode) {
	case CAN_MODE_START:
		mcp251x_clean(net);
		/* We have to delay work since SPI I/O may sleep */
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
		priv->restart_tx = 1;
		if (priv->can.restart_ms == 0)
			priv->after_suspend = AFTER_SUSPEND_RESTART;
		queue_work(priv->wq, &priv->restart_work);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

static int mcp251x_set_normal_mode(struct spi_device *spi)
{
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
	unsigned long timeout;

	/* Enable interrupts */
	mcp251x_write_reg(spi, CANINTE,
			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);

	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* Put device into loopback mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* Put device into listen-only mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
	} else {
	  	dev_err(&spi->dev, "mcp251x_set_normal_mode  else \n");  
		/* Put device into normal mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);

		/* Wait for the device to enter normal mode */
		timeout = jiffies + HZ;
		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
			schedule();
			if (time_after(jiffies, timeout)) {
				dev_err(&spi->dev, "MCP251x didn't"
					" enter in normal mode\n");
				return -EBUSY;
			}
		}
	}
	priv->can.state = CAN_STATE_ERROR_ACTIVE;
	return 0;
}

static int mcp251x_do_set_bittiming(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct can_bittiming *bt = &priv->can.bittiming;
	struct spi_device *spi = priv->spi;

	dev_err(&spi->dev, "before CNF: 0x%02x 0x%02x 0x%02x\n",
		 mcp251x_read_reg(spi, CNF1),
		 mcp251x_read_reg(spi, CNF2),
		 mcp251x_read_reg(spi, CNF3));


	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
			  (bt->brp - 1));
	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
			   CNF2_SAM : 0) |
			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
			  (bt->prop_seg - 1));
	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
			   (bt->phase_seg2 - 1));
	dev_err(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
		 mcp251x_read_reg(spi, CNF1),
		 mcp251x_read_reg(spi, CNF2),
		 mcp251x_read_reg(spi, CNF3));

	return 0;
}

static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
			 struct spi_device *spi)
{
	mcp251x_do_set_bittiming(net);

	mcp251x_write_reg(spi, RXBCTRL(0),
			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
	mcp251x_write_reg(spi, RXBCTRL(1),
			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
	return 0;
}

static int mcp251x_hw_reset(struct spi_device *spi)
{
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
	int ret;
	unsigned long timeout;

	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
	ret = spi_write(spi, priv->spi_tx_buf, 1);
	if (ret) {
		dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
		return -EIO;
	}

	/* Wait for reset to finish */
	timeout = jiffies + HZ;
	mdelay(10);
	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
	       != CANCTRL_REQOP_CONF) {
		schedule();
		if (time_after(jiffies, timeout)) {
			dev_err(&spi->dev, "MCP251x didn't"
				" enter in conf mode after reset\n");
			return -EBUSY;
		}
	}
	return 0;
}

static int mcp251x_hw_probe(struct spi_device *spi)
{
	int st1, st2;

	mcp251x_hw_reset(spi);

	//stone added
	printk(KERN_ERR "------mcp251x_hw_probe ------\n");


	/*
	 * Please note that these are "magic values" based on after
	 * reset defaults taken from data sheet which allows us to see
	 * if we really have a chip on the bus (we avoid common all
	 * zeroes or all ones situations)
	 */
	st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
	st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;

	//stone
	//dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
	printk(KERN_ERR "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);

	/* Check for power up default values */
	return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
}

static void mcp251x_open_clean(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;

	free_irq(spi->irq, priv);
	mcp251x_hw_sleep(spi);
	if (pdata->transceiver_enable)
		pdata->transceiver_enable(0);
	close_candev(net);
}

static int mcp251x_stop(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;

	close_candev(net);

	priv->force_quit = 1;
	free_irq(spi->irq, priv);
	destroy_workqueue(priv->wq);
	priv->wq = NULL;

	mutex_lock(&priv->mcp_lock);

	/* Disable and clear pending interrupts */
	mcp251x_write_reg(spi, CANINTE, 0x00);
	mcp251x_write_reg(spi, CANINTF, 0x00);

	mcp251x_write_reg(spi, TXBCTRL(0), 0);
	mcp251x_clean(net);

	mcp251x_hw_sleep(spi);

	if (pdata->transceiver_enable)
		pdata->transceiver_enable(0);

	priv->can.state = CAN_STATE_STOPPED;

	mutex_unlock(&priv->mcp_lock);

	can_led_event(net, CAN_LED_EVENT_STOP);

	return 0;
}

static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
{
	struct sk_buff *skb;
	struct can_frame *frame;

	skb = alloc_can_err_skb(net, &frame);
	if (skb) {
		frame->can_id |= can_id;
		frame->data[1] = data1;
		netif_rx_ni(skb);
	} else {
		netdev_err(net, "cannot allocate error skb\n");
	}
}

static void mcp251x_tx_work_handler(struct work_struct *ws)
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
						 tx_work);
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
	struct can_frame *frame;

	//stone added log
	dev_err(&spi->dev, "-----mcp251x_tx_work_handler-----");

	
	mutex_lock(&priv->mcp_lock);
	if (priv->tx_skb) {
		if (priv->can.state == CAN_STATE_BUS_OFF) {
			mcp251x_clean(net);
		} 
		else 
		{
			dev_err(&spi->dev, "-----mcp251x_tx_work_handler else-----");
		
			frame = (struct can_frame *)priv->tx_skb->data;

			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
			mcp251x_hw_tx(spi, frame, 0);
			priv->tx_len = 1 + frame->can_dlc;
			can_put_echo_skb(priv->tx_skb, net, 0);
			priv->tx_skb = NULL;
		}
	}
	mutex_unlock(&priv->mcp_lock);
}

static void mcp251x_restart_work_handler(struct work_struct *ws)
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
						 restart_work);
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;

	mutex_lock(&priv->mcp_lock);
	if (priv->after_suspend) {
		mdelay(10);
		mcp251x_hw_reset(spi);
		mcp251x_setup(net, priv, spi);
		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
			mcp251x_set_normal_mode(spi);
		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
			netif_device_attach(net);
			mcp251x_clean(net);
			mcp251x_set_normal_mode(spi);
			netif_wake_queue(net);
		} else {
			mcp251x_hw_sleep(spi);
		}
		priv->after_suspend = 0;
		priv->force_quit = 0;
	}

	if (priv->restart_tx) {
		priv->restart_tx = 0;
		mcp251x_write_reg(spi, TXBCTRL(0), 0);
		mcp251x_clean(net);
		netif_wake_queue(net);
		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
	}
	mutex_unlock(&priv->mcp_lock);
}

//stone modify isr to work
#if 0
static irqreturn_t mcp251x_can_isr(int irq, void *dev_id)
{
	struct mcp251x_priv *priv = dev_id;

	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;

	dev_err(&spi->dev, "-----mcp251x_can_isr-----\n");
	
	mutex_lock(&priv->mcp_lock);
	while (!priv->force_quit) {
		enum can_state new_state;
		u8 intf, eflag;
		u8 clear_intf = 0;
		int can_id = 0, data1 = 0;

		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);

		/* mask out flags we don't care about */
		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;

		/* receive buffer 0 */
		if (intf & CANINTF_RX0IF) {
			mcp251x_hw_rx(spi, 0);
			/*
			 * Free one buffer ASAP
			 * (The MCP2515 does this automatically.)
			 */
			if (mcp251x_is_2510(spi))
				mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
		}

		/* receive buffer 1 */
		if (intf & CANINTF_RX1IF) {
			mcp251x_hw_rx(spi, 1);
			/* the MCP2515 does this automatically */
			if (mcp251x_is_2510(spi))
				clear_intf |= CANINTF_RX1IF;
		}

		/* any error or tx interrupt we need to clear? */
		if (intf & (CANINTF_ERR | CANINTF_TX))
			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
		if (clear_intf)
			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);

		if (eflag)
			mcp251x_write_bits(spi, EFLG, eflag, 0x00);

		/* Update can state */
		if (eflag & EFLG_TXBO) {
			new_state = CAN_STATE_BUS_OFF;
			can_id |= CAN_ERR_BUSOFF;
		} else if (eflag & EFLG_TXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
		} else if (eflag & EFLG_RXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
		} else if (eflag & EFLG_TXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_WARNING;
		} else if (eflag & EFLG_RXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_WARNING;
		} else {
			new_state = CAN_STATE_ERROR_ACTIVE;
		}

		/* Update can state statistics */
		switch (priv->can.state) {
		case CAN_STATE_ERROR_ACTIVE:
			if (new_state >= CAN_STATE_ERROR_WARNING &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_warning++;
		case CAN_STATE_ERROR_WARNING:	/* fallthrough */
			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_passive++;
			break;
		default:
			break;
		}
		priv->can.state = new_state;

		if (intf & CANINTF_ERRIF) {
			/* Handle overflow counters */
			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
				if (eflag & EFLG_RX0OVR) {
					net->stats.rx_over_errors++;
					net->stats.rx_errors++;
				}
				if (eflag & EFLG_RX1OVR) {
					net->stats.rx_over_errors++;
					net->stats.rx_errors++;
				}
				can_id |= CAN_ERR_CRTL;
				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
			}
			mcp251x_error_skb(net, can_id, data1);
		}

		if (priv->can.state == CAN_STATE_BUS_OFF) {
			if (priv->can.restart_ms == 0) {
				priv->force_quit = 1;
				can_bus_off(net);
				mcp251x_hw_sleep(spi);
				break;
			}
		}

		if (intf == 0)
			break;

		if (intf & CANINTF_TX) {
			net->stats.tx_packets++;
			net->stats.tx_bytes += priv->tx_len - 1;
			can_led_event(net, CAN_LED_EVENT_TX);
			if (priv->tx_len) {
				can_get_echo_skb(net, 0);
				priv->tx_len = 0;
			}
			netif_wake_queue(net);
		}

	}
	mutex_unlock(&priv->mcp_lock);
	return IRQ_HANDLED;
}
#endif

static irqreturn_t mcp251x_can_isr(int irq, void *dev_id)
{
	struct mcp251x_priv *priv = dev_id;

	//stone added for debug
	printk(KERN_ERR "----mcp251x_can_isr----\n");

	disable_irq_nosync(irq);

	if (!work_pending(&priv->irq_work))
	queue_work(priv->wq, &priv->irq_work);

	return IRQ_HANDLED;
}

void can_irq_work(struct work_struct *ws)
{

     struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
                         irq_work);
     struct spi_device *spi = priv->spi;
     struct net_device *net = priv->net;


	//stone added for debug
	dev_err(&spi->dev, "Int lower half: can_irq_work\n");

    mutex_lock(&priv->mcp_lock);

    while (!priv->force_quit) {
        enum can_state new_state;
        u8 intf, eflag;
      
        u8 clear_intf = 0;
        int can_id = 0, data1 = 0;
           
        mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
        
        /* mask out flags we don't care about */
        intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR ;//| CANINTF_MERRF;
		//stone added for debug
		printk(KERN_ERR "intf = %x\n", intf);

        if (intf & CANINTF_TX) {
            net->stats.tx_packets++;
            net->stats.tx_bytes += priv->tx_len - 1;
            if (priv->tx_len) {
                can_get_echo_skb(net, 0);
                priv->tx_len = 0;
            }
            netif_wake_queue(net);
        }
        
        /* receive buffer 1 */
        if (intf & CANINTF_RX1IF) {
			//stone added for debug
			printk(KERN_ERR "receive buffer 1\n");
            mcp251x_hw_rx(spi, 1);
            /* the MCP2515 does this automatically */
            if (mcp251x_is_2510(spi))
                clear_intf |= CANINTF_RX1IF;
        }

                /* receive buffer 0 */
        if (intf & CANINTF_RX0IF) {
			//stone added for debug
			printk(KERN_ERR "receive buffer 0\n");
            mcp251x_hw_rx(spi, 0);
            /*
             * Free one buffer ASAP
             * (The MCP2515 does this automatically.)
             */
            if (mcp251x_is_2510(spi))
                mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
        }

   
        /* any error or tx interrupt we need to clear? */
        if (intf & (CANINTF_ERR | CANINTF_TX))
            clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
        if (clear_intf)
            mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);

        if (eflag)
            mcp251x_write_bits(spi, EFLG, eflag, 0x00);


               
        /* Update can state */
        if (eflag & EFLG_TXBO) {
            new_state = CAN_STATE_BUS_OFF;
            can_id |= CAN_ERR_BUSOFF;
        } else if (eflag & EFLG_TXEP) {
            new_state = CAN_STATE_ERROR_PASSIVE;
            can_id |= CAN_ERR_CRTL;
            data1 |= CAN_ERR_CRTL_TX_PASSIVE;
        } else if (eflag & EFLG_RXEP) {
            new_state = CAN_STATE_ERROR_PASSIVE;
            can_id |= CAN_ERR_CRTL;
            data1 |= CAN_ERR_CRTL_RX_PASSIVE;
        } else if (eflag & EFLG_TXWAR) {
            new_state = CAN_STATE_ERROR_WARNING;
            can_id |= CAN_ERR_CRTL;
            data1 |= CAN_ERR_CRTL_TX_WARNING;
        } else if (eflag & EFLG_RXWAR) {
            new_state = CAN_STATE_ERROR_WARNING;
            can_id |= CAN_ERR_CRTL;
            data1 |= CAN_ERR_CRTL_RX_WARNING;
        } else {
            new_state = CAN_STATE_ERROR_ACTIVE;
        }

        /* Update can state statistics */
        switch (priv->can.state) {
        case CAN_STATE_ERROR_ACTIVE:
            if (new_state >= CAN_STATE_ERROR_WARNING &&
                new_state <= CAN_STATE_BUS_OFF)
                priv->can.can_stats.error_warning++;
        case CAN_STATE_ERROR_WARNING:    /* fallthrough */
            if (new_state >= CAN_STATE_ERROR_PASSIVE &&
                new_state <= CAN_STATE_BUS_OFF)
                priv->can.can_stats.error_passive++;
            break;
        default:
            break;
        }
        priv->can.state = new_state;

        if (intf & CANINTF_ERRIF) {
            /* Handle overflow counters */
            if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
                if (eflag & EFLG_RX0OVR) {
                    net->stats.rx_over_errors++;
                    net->stats.rx_errors++;
                }
                if (eflag & EFLG_RX1OVR) {
                    net->stats.rx_over_errors++;
                    net->stats.rx_errors++;
                }
                can_id |= CAN_ERR_CRTL;
                data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
            }
            mcp251x_error_skb(net, can_id, data1);
        }


        if (priv->can.state == CAN_STATE_BUS_OFF) {
            if (priv->can.restart_ms == 0) {
                priv->force_quit = 1;
                can_bus_off(net);
                mcp251x_hw_sleep(spi);
                break;
            }
        }

        if (intf == 0)
            break;
    }
	
    mutex_unlock(&priv->mcp_lock);  
    enable_irq(spi->irq);
}



static int mcp251x_open(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	unsigned long flags;
	int ret;

	ret = open_candev(net);
	if (ret) {
		dev_err(&spi->dev, "unable to set initial baudrate!\n");
		return ret;
	}

	//stone added log
	dev_err(&spi->dev, "mcp251x_open-->open_candev");
	
	mutex_lock(&priv->mcp_lock);
	if (pdata->transceiver_enable)
		pdata->transceiver_enable(1);

	priv->force_quit = 0;
	priv->tx_skb = NULL;
	priv->tx_len = 0;

	flags = IRQF_ONESHOT;
	if (pdata->irq_flags)
		flags |= pdata->irq_flags;
	else
		flags |= IRQF_TRIGGER_FALLING;

	//中断处理接收
	//stone added irq
	spi->irq = gpio_to_irq(pdata->gpio_int1);
	dev_err(&spi->dev, "Interrupt gpio=%d, irq=%d\n", pdata->gpio_int1, spi->irq);

	if(spi->irq)
	{
		ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_isr,
				   flags, DEVICE_NAME, priv);
		if (ret) {
			dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
			if (pdata->transceiver_enable)
				pdata->transceiver_enable(0);
			close_candev(net);
			goto open_unlock;
		}

		INIT_WORK(&priv->irq_work, can_irq_work);
	}

	priv->wq = create_freezable_workqueue("mcp251x_wq");
	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);

	ret = mcp251x_hw_reset(spi);
	//stone added log
	dev_err(&spi->dev, "mcp251x_hw_reset");
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
	}
	ret = mcp251x_setup(net, priv, spi);
	dev_err(&spi->dev, "mcp251x_setup");
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
	}
	ret = mcp251x_set_normal_mode(spi);
	dev_err(&spi->dev, "mcp251x_set_normal_mode");
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
	}

	can_led_event(net, CAN_LED_EVENT_OPEN);

	netif_wake_queue(net);

open_unlock:
	mutex_unlock(&priv->mcp_lock);
	return ret;
}

static const struct net_device_ops mcp251x_netdev_ops = {
	.ndo_open = mcp251x_open,
	.ndo_stop = mcp251x_stop,
	.ndo_start_xmit = mcp251x_hard_start_xmit,
};


//stone added for int
#ifdef CONFIG_OF
static int mcp25625_parse_dt(struct device *dev,
			struct mcp251x_platform_data *pdata)
{
#if 0
	//u32 temp_val;
	//int rc;

	//rc = of_property_read_u32(np, "bosch,init-interval", &temp_val);
	if (rc && (rc != -EINVAL)) {
		dev_err(dev, "Unable to read init-interval\n");
		return rc;
	} else {
		pdata->poll_interval = temp_val;
	}
#endif

	pdata->gpio_int1 = of_get_named_gpio_flags(dev->of_node,
				"mcp25625,irq-gpio", 0, &pdata->int1_flag);

	return 0;
}
#else
static int mcp25625_parse_dt(struct device *dev,
			struct mcp251x_platform_data *pdata)
{
	return -EINVAL;
}
#endif


static int mcp251x_can_probe(struct spi_device *spi)
{
	struct net_device *net;
	struct mcp251x_priv *priv;
	//stone added
	struct mcp251x_platform_data *pdata;
	//struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	int ret = -ENODEV;

	//这里platform_data都指到一起mcp251x_info
	spi->dev.platform_data = &mcp251x_info;
	pdata = spi->dev.platform_data;

	if (spi->dev.of_node) {
		ret = mcp25625_parse_dt(&spi->dev, pdata);
		if (ret) {
			dev_err(&spi->dev, "Failed to parse device tree\n");
			ret = -EINVAL;
			goto error_out;
		}
	}

	//stone added for gpio int 
	{
		if (!gpio_is_valid(pdata->gpio_int1)) {
			dev_err(&spi->dev,
				"gpio(%d) is invalid,\n", pdata->gpio_int1);
			return -EINVAL;
		}

		ret = gpio_request(pdata->gpio_int1, "mscp25625_gpio_int");
		if (ret) {
			dev_err(&spi->dev,
				"Unable to request gpio %d, err=%d\n",
				pdata->gpio_int1, ret);
			return ret;
		}

		ret = gpio_direction_input(pdata->gpio_int1);
		if (ret) {
			dev_err(&spi->dev,
				"Unable to set gpio direction %d, err=%d\n",
				pdata->gpio_int1, ret);
			gpio_free(pdata->gpio_int1);
			return ret;
		}
	}

	//stone added
	priv = kzalloc(sizeof(struct mcp251x_priv), GFP_KERNEL);
	if (!priv) {
		goto error_out;
	}

	mcp251x_enable_dma = 1;
	
	spi_set_drvdata(spi, priv);
	//data->client = client;
	//data->dev = &client->dev;

	printk(KERN_ERR "------mcp251x_can_probe------\n");

	if (!pdata)
		/* Platform data is required for osc freq */
		goto error_out;

	/* Allocate can/net device */
	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
	if (!net) {
		ret = -ENOMEM;
		goto error_alloc;
	}

	//stone added
	printk(KERN_ERR "------mcp251x_can_probe1------\n");

	net->netdev_ops = &mcp251x_netdev_ops;
	net->flags |= IFF_ECHO;

	priv = netdev_priv(net);
	priv->can.bittiming_const = &mcp251x_bittiming_const;
	priv->can.do_set_mode = mcp251x_do_set_mode;
	priv->can.clock.freq = pdata->oscillator_frequency / 2;
	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
	priv->model = spi_get_device_id(spi)->driver_data;
	priv->net = net;
	spi_set_drvdata(spi, priv);

	priv->spi = spi;
	mutex_init(&priv->mcp_lock);

	/* If requested, allocate DMA buffers */
	if (mcp251x_enable_dma) {
		spi->dev.coherent_dma_mask = ~0;

		/*
		 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
		 * that much and share it between Tx and Rx DMA buffers.
		 */
		priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
						      PAGE_SIZE,
						      &priv->spi_tx_dma,
						      GFP_DMA);

		if (priv->spi_tx_buf) {
			priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
			priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
							(PAGE_SIZE / 2));
		} else {
			/* Fall back to non-DMA */
			mcp251x_enable_dma = 0;
		}
	}

	/* Allocate non-DMA buffers */
	if (!mcp251x_enable_dma) {
		priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
		if (!priv->spi_tx_buf) {
			ret = -ENOMEM;
			goto error_tx_buf;
		}
		priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
		if (!priv->spi_rx_buf) {
			ret = -ENOMEM;
			goto error_rx_buf;
		}
	}

	if (pdata->power_enable)
		pdata->power_enable(1);

	/* Call out to platform specific setup */
	if (pdata->board_specific_setup)
		pdata->board_specific_setup(spi);

	SET_NETDEV_DEV(net, &spi->dev);

	/* Configure the SPI bus */
	spi->mode = SPI_MODE_0;
	spi->bits_per_word = 8;
	spi_setup(spi);

	/* Here is OK to not lock the MCP, no one knows about it yet */
	if (!mcp251x_hw_probe(spi)) {
		dev_info(&spi->dev, "Probe failed\n");
		goto error_probe;
	}
	mcp251x_hw_sleep(spi);

	if (pdata->transceiver_enable)
		pdata->transceiver_enable(0);

	ret = register_candev(net);
	if (ret)
		goto error_probe;

	devm_can_led_init(net);

	dev_info(&spi->dev, "probed\n");

	//stone added
	printk(KERN_ERR "------mcp251x_can_probe OK------\n");

	return ret;

error_probe:
	if (!mcp251x_enable_dma)
		kfree(priv->spi_rx_buf);
error_rx_buf:
	if (!mcp251x_enable_dma)
		kfree(priv->spi_tx_buf);
error_tx_buf:
	free_candev(net);
	if (mcp251x_enable_dma)
		dma_free_coherent(&spi->dev, PAGE_SIZE,
				  priv->spi_tx_buf, priv->spi_tx_dma);
error_alloc:
	if (pdata->power_enable)
		pdata->power_enable(0);
	dev_err(&spi->dev, "probe failed\n");
		//stone added
	printk(KERN_ERR "------mcp251x_can_probe err------\n");
error_out:
	return ret;
}

static int mcp251x_can_remove(struct spi_device *spi)
{
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
	struct net_device *net = priv->net;

	unregister_candev(net);
	free_candev(net);

	if (mcp251x_enable_dma) {
		dma_free_coherent(&spi->dev, PAGE_SIZE,
				  priv->spi_tx_buf, priv->spi_tx_dma);
	} else {
		kfree(priv->spi_tx_buf);
		kfree(priv->spi_rx_buf);
	}

	if (pdata->power_enable)
		pdata->power_enable(0);

	return 0;
}

#ifdef CONFIG_PM_SLEEP

static int mcp251x_can_suspend(struct device *dev)
{
	struct spi_device *spi = to_spi_device(dev);
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
	struct net_device *net = priv->net;

	priv->force_quit = 1;
	disable_irq(spi->irq);
	/*
	 * Note: at this point neither IST nor workqueues are running.
	 * open/stop cannot be called anyway so locking is not needed
	 */
	if (netif_running(net)) {
		netif_device_detach(net);

		mcp251x_hw_sleep(spi);
		if (pdata->transceiver_enable)
			pdata->transceiver_enable(0);
		priv->after_suspend = AFTER_SUSPEND_UP;
	} else {
		priv->after_suspend = AFTER_SUSPEND_DOWN;
	}

	if (pdata->power_enable) {
		pdata->power_enable(0);
		priv->after_suspend |= AFTER_SUSPEND_POWER;
	}

	return 0;
}

static int mcp251x_can_resume(struct device *dev)
{
	struct spi_device *spi = to_spi_device(dev);
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	struct mcp251x_priv *priv = spi_get_drvdata(spi);

	if (priv->after_suspend & AFTER_SUSPEND_POWER) {
		pdata->power_enable(1);
		queue_work(priv->wq, &priv->restart_work);
	} else {
		if (priv->after_suspend & AFTER_SUSPEND_UP) {
			if (pdata->transceiver_enable)
				pdata->transceiver_enable(1);
			queue_work(priv->wq, &priv->restart_work);
		} else {
			priv->after_suspend = 0;
		}
	}
	priv->force_quit = 0;
	enable_irq(spi->irq);
	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
	mcp251x_can_resume);

//stone added 	mcp25625
static const struct spi_device_id mcp251x_id_table[] = {
	//{ "mcp2510",	CAN_MCP251X_MCP2510 },
	//{ "mcp2515",	CAN_MCP251X_MCP2515 },
	//{ },
	{"mcp25625", 0},
};
MODULE_DEVICE_TABLE(spi, mcp251x_id_table);

//stone added mcp251x_of_match
static const struct of_device_id mcp251x_of_match[] = {
	{ .compatible = "mcp25625", },
	{ },
};

static struct spi_driver mcp251x_can_driver = {
	.driver = {
		.owner = THIS_MODULE,
		.name = DEVICE_NAME,
		.pm = &mcp251x_can_pm_ops,
		//stone added
		.of_match_table = mcp251x_of_match,
	},

	.id_table = mcp251x_id_table,
	.probe = mcp251x_can_probe,
	.remove = mcp251x_can_remove,
};

//stone added
#if 1
static int __init mcp251x_init(void)
{
	return spi_register_driver(&mcp251x_can_driver);
}

static void __exit mcp251x_exit(void)
{
	spi_unregister_driver(&mcp251x_can_driver);
}

module_init(mcp251x_init);
module_exit(mcp251x_exit);

#else
module_spi_driver(mcp251x_can_driver);
#endif

MODULE_AUTHOR("Chris Elston <[email protected]>");
MODULE_DESCRIPTION("Microchip 251x CAN driver");
MODULE_LICENSE("GPL v2");

由于没有找到CAN分析仪来验证,找了一块stm32的开发板,自己写了个简单的测试程序,main程序参考如下:

/****************************************Copyright (c)****************************************************
**                                      
**                                 http://www.powermcu.com
**
**--------------File Info---------------------------------------------------------------------------------
** File name:               main.c
** Descriptions:            The CAN-BUS application function
**
**--------------------------------------------------------------------------------------------------------
** Created by:              AVRman
** Created date:            2010-10-30
** Version:                 v1.0
** Descriptions:            The original version
**
**--------------------------------------------------------------------------------------------------------
** Modified by:             
** Modified date:           
** Version:                 
** Descriptions:            
**
*********************************************************************************************************/


/* Includes ------------------------------------------------------------------*/
#include "stm32f10x.h"
#include "systick.h" 
#include <stdlib.h>
#include <stdio.h>


#ifdef __GNUC__
  /* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf
     set to 'Yes') calls __io_putchar() */
  #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
  #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */

/* Private variables ---------------------------------------------------------*/
uint16_t CAN_ID;
uint8_t CAN_DATA0,CAN_DATA1,CAN_DATA2,CAN_DATA3,CAN_DATA4,CAN_DATA5,CAN_DATA6,CAN_DATA7;
uint8_t CanFlag,Display;

/* Private function prototypes -----------------------------------------------*/
void GPIO_Configuration(void);
void USART_Configuration(void);
void NVIC_Configuration(void);
void CAN_Configuration(void);
void CanWriteData(uint16_t ID);


/*******************************************************************************
* Function Name  : main
* Description    : Main program
* Input          : None
* Output         : None
* Return         : None
* Attention		 : None
*******************************************************************************/
int main(void)
{
	delay_init();
    CAN_Configuration();
	USART_Configuration();
	printf("\r\n");
	printf("*****************************************************************\r\n");
    printf("*                                                               *\r\n");
	printf("*  Thank you for using HY-RedBull V3.0 Development Board !^_^  *\r\n");
	printf("*                                                               *\r\n");
	printf("*****************************************************************\r\n");
   	printf("CAN-Bus Test \r\n");
   	printf("CAN-Bus Speed 500kHz \r\n");

    GPIO_SetBits(GPIOA , GPIO_Pin_7);	//LED1 off
    GPIO_SetBits(GPIOA , GPIO_Pin_6);	//LED2 off
    GPIO_SetBits(GPIOA , GPIO_Pin_5);	//LED3 off
    GPIO_SetBits(GPIOA , GPIO_Pin_4);	//LED4 off

    /* Infinite loop */
    while (1)
	{
	  if( CanFlag == ENABLE )
	  {
	    CanFlag = DISABLE;
		printf("CAN Received Data \r\n");
		printf("CAN ID %x \r\n",CAN_ID);
		printf("CAN_DATA0 %x \r\n",CAN_DATA0);
		printf("CAN_DATA1 %x \r\n",CAN_DATA1);
		printf("CAN_DATA2 %x \r\n",CAN_DATA2);
		printf("CAN_DATA3 %x \r\n",CAN_DATA3);
		printf("CAN_DATA4 %x \r\n",CAN_DATA4);
		printf("CAN_DATA5 %x \r\n",CAN_DATA5);
		printf("CAN_DATA6 %x \r\n",CAN_DATA6);
		printf("CAN_DATA7 %x \r\n",CAN_DATA7);
	  }
	  
	  CanWriteData(0x88);

      if( Display ) 
	  { 
        /*====LED-ON=======*/
	    GPIO_ResetBits(GPIOA , GPIO_Pin_7);
	    //GPIO_ResetBits(GPIOA , GPIO_Pin_6);
	    //GPIO_ResetBits(GPIOA , GPIO_Pin_5);
	    //GPIO_ResetBits(GPIOA , GPIO_Pin_4);	 
	  }  
	  else 
	  { 
	    /*====LED-OFF=======*/ 
	    GPIO_SetBits(GPIOA , GPIO_Pin_7);
	    //GPIO_SetBits(GPIOA , GPIO_Pin_6);
	    //GPIO_SetBits(GPIOA , GPIO_Pin_5);
	    //GPIO_SetBits(GPIOA , GPIO_Pin_4);		 
	  }
	  Display = ~Display;   	
	  delay_ms(500);  /* delay 200ms */  
    }
}

/*******************************************************************************
* Function Name  : GPIO_Configuration
* Description    : Configures the different GPIO ports.
* Input          : None
* Output         : None
* Return         : None
* Attention		 : None
*******************************************************************************/
void GPIO_Configuration(void)
{
  GPIO_InitTypeDef GPIO_InitStructure;
  /* CAN Periph clock enable */
  //stone comment :RCC_APB2Periph_GPIOA must add for config GPIOA
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO ,ENABLE);
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1, ENABLE);
  //Begin:stone added
  /* Enable GPIO clock */
  //RCC_APB2PeriphClockCmd(CAN_TX_GPIO_CLK|CAN_RX_GPIO_CLK, ENABLE);
  //End:stone added

  GPIO_PinRemapConfig(GPIO_Remap1_CAN1,ENABLE); 
  /* Configure CAN pin: RX  PB8 */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
  GPIO_Init(GPIOB, &GPIO_InitStructure);   
  /* Configure CAN pin: TX PB9*/
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  GPIO_Init(GPIOB, &GPIO_InitStructure);	     
/**
 *  LED1 -> PA7 , LED2 -> PA6 , LED3 -> PA5 , LED4 -> PA4
 */					 
  GPIO_InitStructure.GPIO_Pin =  GPIO_Pin_7 | GPIO_Pin_6 | GPIO_Pin_5 | GPIO_Pin_4;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 
  GPIO_Init(GPIOA, &GPIO_InitStructure);
}

/*******************************************************************************
* Function Name  : NVIC_Configuration
* Description    : Configures the nested vectored interrupt controller.
* Input          : None
* Output         : None
* Return         : None
* Attention		 : None
*******************************************************************************/
void NVIC_Configuration(void)
{
  NVIC_InitTypeDef NVIC_InitStructure;

  /* Enable CAN1 RX0 interrupt IRQ channel */
  NVIC_InitStructure.NVIC_IRQChannel = USB_LP_CAN1_RX0_IRQn;
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
  NVIC_Init(&NVIC_InitStructure);
}

/*******************************************************************************
* Function Name  : USART_Configuration
* Description    : Configure USART1 
* Input          : None
* Output         : None
* Return         : None
* Attention		 : None
*******************************************************************************/
void USART_Configuration(void)
{ 
  GPIO_InitTypeDef GPIO_InitStructure;
  USART_InitTypeDef USART_InitStructure; 

  RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA | RCC_APB2Periph_USART1,ENABLE);
  /*
  *  USART1_TX -> PA9 , USART1_RX ->	PA10
  */				
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;	         
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; 
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 
  GPIO_Init(GPIOA, &GPIO_InitStructure);		   

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;	        
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;  
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 
  GPIO_Init(GPIOA, &GPIO_InitStructure);

  USART_InitStructure.USART_BaudRate = 115200;
  USART_InitStructure.USART_WordLength = USART_WordLength_8b;
  USART_InitStructure.USART_StopBits = USART_StopBits_1;
  USART_InitStructure.USART_Parity = USART_Parity_No;
  USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
  USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

  USART_Init(USART1, &USART_InitStructure); 
  USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
  USART_ITConfig(USART1, USART_IT_TXE, ENABLE);
  USART_Cmd(USART1, ENABLE);
}

/*******************************************************************************
* Function Name  : CAN_Configuration
* Description    : Configures the CAN
* Input          : None
* Output         : None
* Return         : None
* Attention		 : None
*******************************************************************************/
void CAN_Configuration(void)
{
  CAN_InitTypeDef        CAN_InitStructure;
  CAN_FilterInitTypeDef  CAN_FilterInitStructure;

  NVIC_Configuration();
  GPIO_Configuration();
  /* CAN register init */
  CAN_DeInit(CAN1);
  CAN_StructInit(&CAN_InitStructure);

  /* CAN cell init */
  CAN_InitStructure.CAN_TTCM = DISABLE; /* 时间触发禁止, 时间触发:CAN硬件的内部定时器被激活,并且被用于产生时间戳 */
  CAN_InitStructure.CAN_ABOM = DISABLE; /* 自动离线禁止,自动离线:一旦硬件监控到128次11个隐性位,就自动退出离线状态。在这里要软件设定后才能退出 */
  CAN_InitStructure.CAN_AWUM = ENABLE; /* 自动唤醒禁止,有报文来的时候自动退出休眠	*/
  CAN_InitStructure.CAN_NART = DISABLE; /* 报文重传, 如果错误一直传到成功止,否则只传一次 */
  CAN_InitStructure.CAN_RFLM = DISABLE; /* 接收FIFO锁定, 1--锁定后接收到新的报文摘不要,0--接收到新的报文则覆盖前一报文	*/
  CAN_InitStructure.CAN_TXFP = ENABLE;  /* 发送优先级  0---由标识符决定  1---由发送请求顺序决定	*/
  CAN_InitStructure.CAN_Mode = CAN_Mode_Normal; /* 模式	*/
  CAN_InitStructure.CAN_SJW = CAN_SJW_2tq;      /* 重新同步跳宽,只有can硬件处于初始化模式时才能访问这个寄存器 */

  CAN_InitStructure.CAN_BS1 = CAN_BS1_5tq;      /* 时间段1 */
  CAN_InitStructure.CAN_BS2 = CAN_BS2_3tq;      /* 时间段2 */
  //CAN_InitStructure.CAN_Prescaler = 45;         /* 波特率预分频数 */  
  CAN_InitStructure.CAN_Prescaler = 12;         /* 波特率预分频数  stone modify to 500K*/  
  /*注意:12M的晶振配置为5 3 12才能得到500Kbps  比较奇怪*/
 
  /* 波特率计算方法 CAN 时钟频率为 APB1 = 36 MHz */
  /* CANbps= Fpclk/((BRP+1)*((Tseg1+1)+(Tseg2+1)+1)  此处计算为  CANbps=36000000/(45*(4+3+1))=100kHz */   														  //此处Tseg1+1 = CAN_BS1_8tp
  /* 配置大方向: Tseg1>=Tseg2  Tseg2>=tq; Tseg2>=2TSJW */
    
  if (CAN_Init(CAN1,&CAN_InitStructure) == CANINITFAILED) 		
  {
    /* 初始化时先设置CAN_MCR的初始化位 */  														
    /* 然后查看硬件是否真的设置了CAN_MSR的初始化位来确认是否进入了初始化模式  */		 													                  
  }	
  /* 配置CAN过滤器 */
  /* 32位对应的id */
  /* stdid[10:0],extid[17:0],ide,rtr	*/
  /* 16位对应的id */
  /* stdid[10:0],ide,rtr,extid[17:15] */
  /* 一般使用屏蔽模式	*/
  /* 要注意的是fifo接收存满了中断,还有就是fifo的概念,即取的一直是最早那一个数据, 要释放才能取下一个数据 */
  /* 常使用的中断有 */
  /* 1,有信息中断,即fifo挂号中断 */
  /* 2,fifo满中断	*/
  /* 3,fifo满之后又有信息来则中断,即fifo溢出中断	*/
  CAN_FilterInitStructure.CAN_FilterNumber=0;     /* 过滤器0 */
  CAN_FilterInitStructure.CAN_FilterMode=CAN_FilterMode_IdMask;  /* 屏敝模式 */
  CAN_FilterInitStructure.CAN_FilterScale=CAN_FilterScale_32bit; /* 32位 */
  CAN_FilterInitStructure.CAN_FilterIdHigh=0x0000;  /* 以下四个都为0, 表明不过滤任何id */
  CAN_FilterInitStructure.CAN_FilterIdLow=0x0000;
  CAN_FilterInitStructure.CAN_FilterMaskIdHigh=0x0000;
  CAN_FilterInitStructure.CAN_FilterMaskIdLow=0x0000;
  CAN_FilterInitStructure.CAN_FilterFIFOAssignment=0;  /* 能够通过该过滤器的报文存到fifo0中 */
  CAN_FilterInitStructure.CAN_FilterActivation=ENABLE;
  CAN_ITConfig(CAN1,CAN_IT_FMP0, ENABLE);   /* 挂号中断, 进入中断后读fifo的报文函数释放报文清中断标志 */
  CAN_FilterInit(&CAN_FilterInitStructure);
}

/*******************************************************************************
* Function Name  : CanWriteData
* Description    : Can Write Date to CAN-BUS
* Input          : None
* Output         : None
* Return         : None
* Attention		 : None
*******************************************************************************/
void CanWriteData(uint16_t ID)
{
  CanTxMsg TxMessage;

  CAN_DATA0=rand()%0xff;  CAN_DATA1=rand()%0xff;  
  CAN_DATA2=rand()%0xff;  CAN_DATA3=rand()%0xff;  
  CAN_DATA4=rand()%0xff;  CAN_DATA5=rand()%0xff;
  CAN_DATA6=rand()%0xff;  CAN_DATA7=rand()%0xff; 

  /* transmit */
  TxMessage.StdId = ID;  /* 设置标准id  注意标准id的最高7位不能全是隐性(1)。共11位 */
//TxMessage.ExtId = 0x00;     //设置扩展id  扩展id共18位
  TxMessage.RTR = CAN_RTR_DATA; /* 设置为数据帧 */
  TxMessage.IDE = CAN_ID_STD;   /* 使用标准id	*/
  TxMessage.DLC = 8;            /* 数据长度, can报文规定最大的数据长度为8字节 */
  TxMessage.Data[0] = CAN_DATA0;    
  TxMessage.Data[1] = CAN_DATA1;    
  TxMessage.Data[2] = CAN_DATA2;    
  TxMessage.Data[3] = CAN_DATA3;    
  TxMessage.Data[4] = CAN_DATA4;    
  TxMessage.Data[5] = CAN_DATA5;     
  TxMessage.Data[6] = CAN_DATA6;    
  TxMessage.Data[7] = CAN_DATA7;      
  CAN_Transmit(CAN1,&TxMessage);  /* 返回这个信息请求发送的邮箱号0,1,2或没有邮箱申请发送no_box */	
}

/*******************************************************************************
* Function Name  : USB_LP_CAN1_RX0_IRQHandler
* Description    : This function handles USB Low Priority or CAN RX0 interrupts 
* Input          : None
* Output         : None
* Return         : None
* Attention		 : None
*******************************************************************************/
void USB_LP_CAN1_RX0_IRQHandler(void)
{
  CanRxMsg RxMessage;
  CAN_Receive(CAN1,CAN_FIFO0, &RxMessage);  /* 此函数包含释放提出报文了的,在非必要时,不需要自己释放 */
  CAN_ID=RxMessage.StdId;
  CAN_DATA0=RxMessage.Data[0];
  CAN_DATA1=RxMessage.Data[1];
  CAN_DATA2=RxMessage.Data[2];
  CAN_DATA3=RxMessage.Data[3];
  CAN_DATA4=RxMessage.Data[4];
  CAN_DATA5=RxMessage.Data[5];
  CAN_DATA6=RxMessage.Data[6];
  CAN_DATA7=RxMessage.Data[7];
  CAN_ClearITPendingBit(CAN1,CAN_IT_FMP0);  /* 清除挂起中断 */
  CanFlag = ENABLE;
}

/**
  * @brief  Retargets the C library printf function to the USART.
  * @param  None
  * @retval None
  */
PUTCHAR_PROTOTYPE
{
  /* Place your implementation of fputc here */
  /* e.g. write a character to the USART */
  USART_SendData(USART1, (uint8_t) ch);

  /* Loop until the end of transmission */
  while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET)
  {}

  return ch;
}

#ifdef  USE_FULL_ASSERT

/**
  * @brief  Reports the name of the source file and the source line number
  *   where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t* file, uint32_t line)
{ 
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

  /* Infinite loop */
  while (1)
  {
  }
}
#endif

/*********************************************************************************************************
      END FILE
*********************************************************************************************************/

在Android侧还需要找个apk去设置CAN参数来通讯,懒得去写apk了。参考网上的例子简单写了个可执行程序运行验证是否正确:

 /*
 *  can_test_send_and_dump.c
 *
 *  Created on: 2018-8-25
 *  Author: tanghanyue
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <net/if.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <linux/can.h>
#include <linux/can/raw.h>

int main(int argc, char *argv[])
{
	int s, nbytes;
    unsigned char number=0;
	struct sockaddr_can addr;
	struct ifreq ifr;
	struct can_frame frame;
	struct can_frame frame_send;
	struct can_filter rfilter[1];
	pid_t pid = -1;
	int i;
	
	/* handle (optional) flags first */
	if(argc != 2) {
	    fprintf(stderr, "Usage:  %s <-r> <can interface name> for receiving\nor <-s> <can interface name> for sending\n", argv[0]);
	    exit(1);
	}
	/* create socket */
	if ((s = socket(PF_CAN, SOCK_RAW, CAN_RAW)) < 0)
	{
	   perror("Create socket failed");
	   exit(-1);
	}

	/* set up can interface */
	strcpy(ifr.ifr_name, argv[1]);
	printf("can port is %s\n",ifr.ifr_name);
	/* assign can device */
	ioctl(s, SIOCGIFINDEX, &ifr);
	addr.can_family = AF_CAN;
	addr.can_ifindex = ifr.ifr_ifindex;
	/* bind can device */
	if(bind(s, (struct sockaddr *)&addr, sizeof(addr)) < 0)
	{
	     perror("Bind can device failed\n");
	     close(s);
	     exit(-2);
	}

	pid = fork();
    if(pid == -1) 
    { 
		perror("\n\tfailed to fork!!\n\n");
		return  -1;
    }
	
    else if(pid==0)/* configure receiving can data*/
	{
	   /* set filter for only receiving packet with can id 0x88 */
	   rfilter[0].can_id = 0x88;
	   rfilter[0].can_mask = CAN_SFF_MASK;
	   if(setsockopt(s, SOL_CAN_RAW, CAN_RAW_FILTER, &rfilter, sizeof(rfilter)) < 0)
	   {
	        perror("set receiving filter error\n");
	        close(s);
	        exit(-3);
	   }
	   /* keep reading */
	   while(1)
	   {
	       nbytes = read(s, &frame, sizeof(frame));
	       if(nbytes > 0)
	       {
		   printf("read datas:%s ID=%#x data length=%d\n", ifr.ifr_name, frame.can_id, frame.can_dlc);
		   for ( i=0; i < frame.can_dlc; i++)
		        printf("%#x ", frame.data[i]);
		   printf("\n");
	       }
	       printf("read can data over\n");

	   }
	}/* configure sending can data*/
    
	else
	{   
		while(1)
		{
			/* configure can_id and can data length */
			frame_send.can_id = 0x88;
			frame_send.can_dlc = 8;
			printf("%s ID=%#x data length=%d\n", ifr.ifr_name, frame_send.can_id, frame_send.can_dlc);
			/* prepare data for sending: 0x11,0x22...0x88 */
			for (i=0; i<8; i++)
			{
				frame_send.data[i] = ((i+1)<<4) | (i+1);
				frame_send.data[7] =number;
				printf("%#x ", frame_send.data[i]);
			}
			printf("success to Sent out\n");
			/* Sending data */
			if(write(s, &frame_send, sizeof(frame_send)) < 0)
			{
				perror("Send failed");
				close(s);
				exit(-4);
			}
			sleep(1);
			number++;
        }  
	}
	
	close(s);
	return 0;
}

把两块板子的CAN总线连接在一起,验证和stm32可以正常通讯,中断log如下:

[  105.920481] ----mcp251x_can_isr----
[  105.923041] mcp25625 spi4.0: Int lower half: can_irq_work
[  105.928635] intf = 1
[  105.930614] receive buffer 0
[  105.933581] mcp25625 spi4.0: buf_idx=0
[  105.937203] mcp25625 spi4.0: buf[0]=ff
[  105.942904] mcp25625 spi4.0: buf[1]=11
[  105.945622] mcp25625 spi4.0: buf[2]=0
[  105.949728] mcp25625 spi4.0: buf[3]=ff
[  105.953206] mcp25625 spi4.0: buf[4]=57
[  105.960300] mcp25625 spi4.0: buf[5]=8
[  105.962932] mcp25625 spi4.0: buf[6]=5d
[  105.966664] mcp25625 spi4.0: buf[7]=e3
[  105.971056] mcp25625 spi4.0: buf[8]=4c
[  105.974610] mcp25625 spi4.0: buf[9]=cf
[  105.978517] mcp25625 spi4.0: buf[10]=60
[  105.981858] mcp25625 spi4.0: buf[11]=1
[  105.986312] mcp25625 spi4.0: buf[12]=7a
[  105.990031] mcp25625 spi4.0: buf[13]=16
[  105.993205] intf = 0

至此调试完成。

猜你喜欢

转载自blog.csdn.net/cornerstone1/article/details/113115663