机器学习 之 RBF

回忆一下普通BP网络,每个节点只是简单加上,然后一个激活函数。
而RBF网络,是所有的取平方和开根,径向基函数实际上就是欧氏距离。
任意一个满足Φ(x)=Φ(‖x‖)特性的函数Φ都叫做径向基函数,标准的一般使用欧氏距离(也叫做欧式径向基函数),尽管其他距离函数也是可以的。最常用的径向基函数是高斯核函数 ,形式为 k ( ∣ ∣ x − x c ∣ ∣ ) = e − ∣ ∣ x − x c ∣ ∣ 2 / ( 2 ∗ σ ) 2 k(||x-xc||)=e^{- ||x-xc||^2/(2*σ)^2 } k(xxc)=exxc2/(2σ)2其中 x c x_c xc为核函数中心,σ为函数的宽度参数 , 控制了函数的径向作用范围。
RBF神将网络是一种三层神经网络,其包括输入层、隐层、输出层。从输入空间到隐层空间的变换是非线性的,而从隐层空间到输出层空间变换是线性的。流图如下:
在这里插入图片描述
RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。当RBF的中心点确定以后,这种映射关系也就确定了。而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和,此处的权即为网络可调参数。其中,隐含层的作用是把向量从低维度的p映射到高维度的h,这样低维度线性不可分的情况到高维度就可以变得线性可分了,主要就是核函数的思想。这样,网络由输入到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的。网络的权就可由线性方程组直接解出,从而大大加快学习速度并避免局部极小问题。
BP神经网络的隐节点采用输入模式与权向量的内积作为激活函数的自变量,而激活函数采用Sigmoid函数。各调参数对BP网络的输出具有同等地位的影响,因此BP神经网络是对非线性映射的全局逼近。

RBF神经网络的隐节点采用输入模式与中心向量的距离(如欧式距离)作为函数的自变量,并使用径向基函数(如Gaussian函数)作为激活函数。神经元的输入离径向基函数中心越远,神经元的激活程度就越低(高斯函数)。RBF网络的输出与部分调参数有关,譬如,一个wij值只影响一个yi的输出(参考上面第二章网络输出),RBF神经网络因此具有“局部映射”特性。

在这里插入图片描述
所谓局部逼近是指目标函数的逼近仅仅根据查询点附近的数据。而事实上,对于径向基网络,通常使用的是高斯径向基函数,函数图象是两边衰减且径向对称的,当选取的中心与查询点(即输入数据)很接近的时候才对输入有真正的映射作用,若中心与查询点很远的时候,欧式距离太大的情况下,输出的结果趋于0,所以真正起作用的点还是与查询点很近的点,所以是局部逼近;而BP网络对目标函数的逼近跟所有数据都相关,而不仅仅来自查询点附近的数据。

Poggio和Girosi已经证明,RBF网络是连续函数的最佳逼近,而BP网络不是。

SVM等如果使用核函数的技巧的话,不太适应于大样本和大的特征数的情况,因此提出了RBF。

另外,SVM中的高斯核函数可以看作与每一个输入点的距离,而RBF神经网络对输入点做了一个聚类。RBF神经网络用高斯核函数时,其数据中心C可以是训练样本中的抽样,此时与svm的高斯核函数是完全等价的,也可以是训练样本集的多个聚类中心,所以他们都是需要选择数据中心的,只不过SVM使用高斯核函数时,这里的数据中心都是训练样本本身而已。

猜你喜欢

转载自blog.csdn.net/HeroIsUseless/article/details/109513829
rbf