备战实习记录之【数组篇】+【链表篇】

一、数组篇

1.「数组是存放在连续内存空间上的相同类型数据的集合。」

2.「数组下表都是从0开始的。」

「数组内存空间的地址是连续的」

3.正是「因为数组的在内存空间的地址是连续的,所以我们在删除或者增添元素的时候,就难免要移动其他元素的地址。」

(「数组的元素是不能删的,只能覆盖。」)

4.「二维数据在内存中不是 3*4 的连续地址空间,而是四条连续的地址空间组成!」

5.二分法

「只要看到面试题里给出的数组是有序数组,都可以想一想是否可以使用二分法。」

同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下表可能不是唯一的。

(Leecode#35)

class Solution {
public:
    int searchInsert(vector<int>& nums, int target) {
        int n = nums.size();
        int left = 0;
        int right = n - 1; // 定义target在左闭右闭的区间里,[left, right] 
        while (left <= right) { // 当left==right,区间[left, right]依然有效
            int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
            if (nums[middle] > target) {
                right = middle - 1; // target 在左区间,所以[left, middle - 1]
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,所以[middle + 1, right]
            } else { // nums[middle] == target
                return middle;
            }
        }
        // 分别处理如下四种情况
        // 目标值在数组所有元素之前  [0, -1]
        // 目标值等于数组中某一个元素  return middle;
        // 目标值插入数组中的位置 [left, right],return  right + 1
        // 目标值在数组所有元素之后的情况 [left, right], return right + 1
        return right + 1;
    }
};

6.双指针法

双指针法(快慢指针法):「通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。」

(多用于考察数组与链表操作)

7.滑动窗口

「滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。

二、链表篇

1.虚拟头节点

链表的一大问题就是操作当前节点必须要找前一个节点才能操作。这就造成了,头结点的尴尬,因为头结点没有前一个节点了。

「每次对应头结点的情况都要单独处理,所以使用虚拟头结点的技巧,就可以解决这个问题」。

2.链表的基本操作

3.反转链表(迭代法与递归法)

4.环形链表

5.链表常见考察题型:

无法高效获取长度,无法根据偏移快速访问元素,是链表的两个劣势。然而面试的时候经常碰见诸如获取倒数第k个元素,获取中间位置的元素,判断链表是否存在环,判断环的长度等和长度与位置有关的问题。这些问题都可以通过灵活运用双指针来解决。

Tips:双指针并不是固定的公式,而是一种思维方式~

先来看"倒数第k个元素的问题"。设有两个指针 p 和 q,初始时均指向头结点。首先,先让 p 沿着 next 移动 k 次。此时,p 指向第 k+1个结点,q 指向头节点,两个指针的距离为 k 。然后,同时移动 p 和 q,直到 p 指向空,此时 q 即指向倒数第 k 个结点。可以参考下图来理解:

class Solution {
    public:
    ListNode* getKthFromEnd(ListNode* head, int k) {
        ListNode *p = head, *q = head; //初始化
        while(k--) {   //将 p指针移动 k 次
            p = p->next;
        }
        while(p != nullptr) {//同时移动,直到 p == nullptr
            p = p->next;
            q = q->next;
        }
        return q;
    }
}

获取中间元素的问题。设有两个指针 fast 和 slow,初始时指向头节点。每次移动时,fast向后走两次,slow向后走一次,直到 fast 无法向后走两次。这使得在每轮移动之后。fast 和 slow 的距离就会增加一。设链表有 n 个元素,那么最多移动 n/2 轮。当 n 为奇数时,slow 恰好指向中间结点,当 n 为 偶数时,slow 恰好指向中间两个结点的靠前一个(可以考虑下如何使其指向后一个结点呢?)。

下述代码实现了 n 为偶数时慢指针指向靠后结点。

class Solution {
public:
    ListNode* middleNode(ListNode* head) {
        ListNode *p = head, *q = head;
        while(q != nullptr && q->next != nullptr) {
            p = p->next;
            q = q->next->next;
        }
        return p;
    } 
};

是否存在环的问题。如果将尾结点的 next 指针指向其他任意一个结点,那么链表就存在了一个环。

上一部分中,总结快慢指针的特性 —— 每轮移动之后两者的距离会加一。下面会继续用该特性解决环的问题。
当一个链表有环时,快慢指针都会陷入环中进行无限次移动,然后变成了追及问题。想象一下在操场跑步的场景,只要一直跑下去,快的总会追上慢的。当两个指针都进入环后,每轮移动使得慢指针到快指针的距离增加一,同时快指针到慢指针的距离也减少一,只要一直移动下去,快指针总会追上慢指针。

根据上述表述得出,如果一个链表存在环,那么快慢指针必然会相遇。实现Java代码如下:

public class Solution {
    public boolean hasCycle(ListNode head) {
        ListNode fast = head;
        ListNode slow = head;
        while(fast!=null&&fast.next!=null){
            slow = slow.next;
            fast = fast.next.next;
            if(fast == slow){
                return true;
            }
        }
        return false;
    }
}

最后一个问题,如果存在环,如何判断环的长度呢?方法是,快慢指针相遇后继续移动,直到第二次相遇。两次相遇间的移动次数即为环的长度。

猜你喜欢

转载自blog.csdn.net/paranior/article/details/114415669