albert每两层共享参数

1、albert的原始实现(brightmart实现)

def transformer_model(input_tensor,
                      attention_mask=None,
                      hidden_size=768,
                      num_hidden_layers=12,
                      num_attention_heads=12,
                      intermediate_size=3072,
                      intermediate_act_fn=gelu,
                      hidden_dropout_prob=0.1,
                      attention_probs_dropout_prob=0.1,
                      initializer_range=0.02,
                      do_return_all_layers=False,
                      share_parameter_across_layers=True):
    """Multi-headed, multi-layer Transformer from "Attention is All You Need".

    This is almost an exact implementation of the original Transformer encoder.

    See the original paper:
    https://arxiv.org/abs/1706.03762

    Also see:
    https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py

    Args:
      input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size].
      attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length,
        seq_length], with 1 for positions that can be attended to and 0 in
        positions that should not be.
      hidden_size: int. Hidden size of the Transformer.
      num_hidden_layers: int. Number of layers (blocks) in the Transformer.
      num_attention_heads: int. Number of attention heads in the Transformer.
      intermediate_size: int. The size of the "intermediate" (a.k.a., feed
        forward) layer.
      intermediate_act_fn: function. The non-linear activation function to apply
        to the output of the intermediate/feed-forward layer.
      hidden_dropout_prob: float. Dropout probability for the hidden layers.
      attention_probs_dropout_prob: float. Dropout probability of the attention
        probabilities.
      initializer_range: float. Range of the initializer (stddev of truncated
        normal).
      do_return_all_layers: Whether to also return all layers or just the final
        layer.

    Returns:
      float Tensor of shape [batch_size, seq_length, hidden_size], the final
      hidden layer of the Transformer.

    Raises:
      ValueError: A Tensor shape or parameter is invalid.
    """
    if hidden_size % num_attention_heads != 0:
        raise ValueError(
            "The hidden size (%d) is not a multiple of the number of attention "
            "heads (%d)" % (hidden_size, num_attention_heads))

    attention_head_size = int(hidden_size / num_attention_heads)
    input_shape = get_shape_list(input_tensor, expected_rank=3)
    batch_size = input_shape[0]
    seq_length = input_shape[1]
    input_width = input_shape[2]

    # The Transformer performs sum residuals on all layers so the input needs
    # to be the same as the hidden size.
    if input_width != hidden_size:
        raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %
                         (input_width, hidden_size))

    # We keep the representation as a 2D tensor to avoid re-shaping it back and
    # forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on
    # the GPU/CPU but may not be free on the TPU, so we want to minimize them to
    # help the optimizer.
    prev_output = reshape_to_matrix(input_tensor)

    all_layer_outputs = []
    for layer_idx in range(num_hidden_layers):
        if share_parameter_across_layers:
            name_variable_scope = "layer_shared"
        else:
            name_variable_scope = "layer_%d" % layer_idx
        # share all parameters across layers. add by brightmart, 2019-09-28. previous it is like this: "layer_%d" % layer_idx
        with tf.variable_scope(name_variable_scope,
                               reuse=True if (share_parameter_across_layers and layer_idx > 0) else False):

            layer_input = prev_output

            with tf.variable_scope("attention"):
                attention_heads = []
                with tf.variable_scope("self"):
                    attention_head = attention_layer(
                        from_tensor=layer_input,
                        to_tensor=layer_input,
                        attention_mask=attention_mask,
                        num_attention_heads=num_attention_heads,
                        size_per_head=attention_head_size,
                        attention_probs_dropout_prob=attention_probs_dropout_prob,
                        initializer_range=initializer_range,
                        do_return_2d_tensor=True,
                        batch_size=batch_size,
                        from_seq_length=seq_length,
                        to_seq_length=seq_length)
                    attention_heads.append(attention_head)

                attention_output = None
                if len(attention_heads) == 1:
                    attention_output = attention_heads[0]
                else:
                    # In the case where we have other sequences, we just concatenate
                    # them to the self-attention head before the projection.
                    attention_output = tf.concat(attention_heads, axis=-1)

                # Run a linear projection of `hidden_size` then add a residual
                # with `layer_input`.
                with tf.variable_scope("output"):
                    attention_output = tf.layers.dense(
                        attention_output,
                        hidden_size,
                        kernel_initializer=create_initializer(initializer_range))
                    attention_output = dropout(attention_output, hidden_dropout_prob)
                    attention_output = layer_norm(attention_output + layer_input)

            # The activation is only applied to the "intermediate" hidden layer.
            with tf.variable_scope("intermediate"):
                intermediate_output = tf.layers.dense(
                    attention_output,
                    intermediate_size,
                    activation=intermediate_act_fn,
                    kernel_initializer=create_initializer(initializer_range))

            # Down-project back to `hidden_size` then add the residual.
            with tf.variable_scope("output"):
                layer_output = tf.layers.dense(
                    intermediate_output,
                    hidden_size,
                    kernel_initializer=create_initializer(initializer_range))
                layer_output = dropout(layer_output, hidden_dropout_prob)
                layer_output = layer_norm(layer_output + attention_output)
                prev_output = layer_output
                all_layer_outputs.append(layer_output)

    if do_return_all_layers:
        final_outputs = []
        for layer_output in all_layer_outputs:
            final_output = reshape_from_matrix(layer_output, input_shape)
            final_outputs.append(final_output)
        return final_outputs
    else:
        final_output = reshape_from_matrix(prev_output, input_shape)
        return final_output

2、变更为每两层共享参数

在tensorflow中,为了 节约变量存储空间 ,我们常常需要通过共享 变量作用域(variable_scope) 来实现 共享变量 。

大家比较常用也比较笨的一种方法是,在重复使用(即 非第一次使用)时,设置 reuse=True 来 再次调用 该共享变量作用域(variable_scope)。对于未初始化的变量,当碰到reuse=True时,会报错;参考参数共享的博客https://blog.csdn.net/qq_35203425/article/details/82469348使用 tf.Variable_scope(…, reuse=tf.AUTO_REUSE) 的方法来一次性对variable_scope进行reuse,现将代码模板总结如下:

def transformer_model(input_tensor,
                      attention_mask=None,
                      hidden_size=768,
                      num_hidden_layers=12,
                      num_attention_heads=12,
                      intermediate_size=3072,
                      intermediate_act_fn=gelu,
                      hidden_dropout_prob=0.1,
                      attention_probs_dropout_prob=0.1,
                      initializer_range=0.02,
                      do_return_all_layers=False,
                      share_parameter_across_layers=True):
    """Multi-headed, multi-layer Transformer from "Attention is All You Need".

    This is almost an exact implementation of the original Transformer encoder.

    See the original paper:
    https://arxiv.org/abs/1706.03762

    Also see:
    https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py

    Args:
      input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size].
      attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length,
        seq_length], with 1 for positions that can be attended to and 0 in
        positions that should not be.
      hidden_size: int. Hidden size of the Transformer.
      num_hidden_layers: int. Number of layers (blocks) in the Transformer.
      num_attention_heads: int. Number of attention heads in the Transformer.
      intermediate_size: int. The size of the "intermediate" (a.k.a., feed
        forward) layer.
      intermediate_act_fn: function. The non-linear activation function to apply
        to the output of the intermediate/feed-forward layer.
      hidden_dropout_prob: float. Dropout probability for the hidden layers.
      attention_probs_dropout_prob: float. Dropout probability of the attention
        probabilities.
      initializer_range: float. Range of the initializer (stddev of truncated
        normal).
      do_return_all_layers: Whether to also return all layers or just the final
        layer.

    Returns:
      float Tensor of shape [batch_size, seq_length, hidden_size], the final
      hidden layer of the Transformer.

    Raises:
      ValueError: A Tensor shape or parameter is invalid.
    """
    if hidden_size % num_attention_heads != 0:
        raise ValueError(
            "The hidden size (%d) is not a multiple of the number of attention "
            "heads (%d)" % (hidden_size, num_attention_heads))

    attention_head_size = int(hidden_size / num_attention_heads)
    input_shape = get_shape_list(input_tensor, expected_rank=3)
    batch_size = input_shape[0]
    seq_length = input_shape[1]
    input_width = input_shape[2]

    # The Transformer performs sum residuals on all layers so the input needs
    # to be the same as the hidden size.
    if input_width != hidden_size:
        raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %
                         (input_width, hidden_size))

    # We keep the representation as a 2D tensor to avoid re-shaping it back and
    # forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on
    # the GPU/CPU but may not be free on the TPU, so we want to minimize them to
    # help the optimizer.
    prev_output = reshape_to_matrix(input_tensor)

    all_layer_outputs = []
    for layer_idx in range(num_hidden_layers):
        if share_parameter_across_layers:
            #name_variable_scope = "layer_shared"
            name_variable_scope = "layer_%d" % (layer_idx//2)
        else:
            name_variable_scope = "layer_%d" % layer_idx
        # share all parameters across layers. add by brightmart, 2019-09-28. previous it is like this: "layer_%d" % layer_idx
        with tf.variable_scope(name_variable_scope,
                               reuse=tf.AUTO_REUSE if (share_parameter_across_layers and layer_idx > 0) else False):

            layer_input = prev_output

            with tf.variable_scope("attention"):
                attention_heads = []
                with tf.variable_scope("self"):
                    attention_head = attention_layer(
                        from_tensor=layer_input,
                        to_tensor=layer_input,
                        attention_mask=attention_mask,
                        num_attention_heads=num_attention_heads,
                        size_per_head=attention_head_size,
                        attention_probs_dropout_prob=attention_probs_dropout_prob,
                        initializer_range=initializer_range,
                        do_return_2d_tensor=True,
                        batch_size=batch_size,
                        from_seq_length=seq_length,
                        to_seq_length=seq_length)
                    attention_heads.append(attention_head)

                attention_output = None
                if len(attention_heads) == 1:
                    attention_output = attention_heads[0]
                else:
                    # In the case where we have other sequences, we just concatenate
                    # them to the self-attention head before the projection.
                    attention_output = tf.concat(attention_heads, axis=-1)

                # Run a linear projection of `hidden_size` then add a residual
                # with `layer_input`.
                with tf.variable_scope("output"):
                    attention_output = tf.layers.dense(
                        attention_output,
                        hidden_size,
                        kernel_initializer=create_initializer(initializer_range))
                    attention_output = dropout(attention_output, hidden_dropout_prob)
                    attention_output = layer_norm(attention_output + layer_input)

            # The activation is only applied to the "intermediate" hidden layer.
            with tf.variable_scope("intermediate"):
                intermediate_output = tf.layers.dense(
                    attention_output,
                    intermediate_size,
                    activation=intermediate_act_fn,
                    kernel_initializer=create_initializer(initializer_range))

            # Down-project back to `hidden_size` then add the residual.
            with tf.variable_scope("output"):
                layer_output = tf.layers.dense(
                    intermediate_output,
                    hidden_size,
                    kernel_initializer=create_initializer(initializer_range))
                layer_output = dropout(layer_output, hidden_dropout_prob)
                layer_output = layer_norm(layer_output + attention_output)
                prev_output = layer_output
                all_layer_outputs.append(layer_output)

    if do_return_all_layers:
        final_outputs = []
        for layer_output in all_layer_outputs:
            final_output = reshape_from_matrix(layer_output, input_shape)
            final_outputs.append(final_output)
        return final_outputs
    else:
        final_output = reshape_from_matrix(prev_output, input_shape)
        return final_output

3、权值共享的优点

1). 减少运算只是锦上添花

权重共享可以减少运算

2). 权重共享的本质是特征提取

之前说到权重就是模板,我们按照一定的模板来与样本进行比对,看看有没有与模板一致的外在表现(特征)

3). 权重共享使得模型泛化

普通的神经网络输入是固定的,而权重共享可以使得输入不固定。

比如很多张图像,每张图像上有个人脸,但是人脸在图像的不同位置,或者图像的大小也不相同,此时权重共享可以全图扫描,搜索人脸,进而把特征提取出来。

再如RNN做语义分析,两句话:我去年去了北京;去年我和父母去了北京,这其实意思差不多,但文字位置不同,句子长度也不同。

权重共享使得模型能够处理一个连续序列的特征,而不管输入的序列总长度是多少。

当这个连续序列在样本的不同位置时,依然能够识别,而不是学习每个位置的规则,这不仅抓住了不同特征之间的连续性,也减少了学习规则

参考博客

https://blog.csdn.net/qq_35203425/article/details/82469348 (tf.AUTO_REUSE实现作用域共享)

https://zhuanlan.zhihu.com/p/103226488 (bert各个模块详解,我觉得非常详细的一篇博客,rewrite)

https://www.cnblogs.com/yanshw/p/10483014.html (再谈权重共享,这篇博客论证了权重共享是必须的)

猜你喜欢

转载自blog.csdn.net/u013069552/article/details/110058519