经典算法:动态规划(由入门到精通,由探寻到实践)

人文定义:

动态规划算法是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。
动态规划算法的基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解

基本思想与策略编辑:

由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。

动态规划是一个很经典的算法,动态规划算法也是新手在刚接触算法设计时很苦恼的问题,有时候觉得难以理解,但是真正理解之后,就会觉得动态规划其实并没有想象中那么难,反而很有意思。只看概念和原理,让人觉得晦涩难懂,即使一时间看懂了,发现当自己做题的时候又会觉得无所适从。我认为,理解算法最重要的还是在于练习,只有通过自己练习,才可以更快地提升。话不多说,接下来我就通过一个例子来一步一步讲解动态规划是怎样使用的,只有知道怎样使用,才能更好地理解,而不是一味地对概念和原理进行反复琢磨。

经典的数字三角形问题(简单易懂,经典动态规划);

                              7
                             3 8
                            8 1 0
                           2 7 4 4
                          4 5 2 6 5   

在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。路径上的每一步都只能往左下或右下走。只需要求出这个最大和即可,不必给出具体路径。 三角形的行数大于1小于等于100,数字为 0 - 99
输入格式:

5      //表示三角形的行数    接下来输入三角形

7

3   8

8   1   0

2   7   4   4

4   5   2   6   5

接下来,我们来分析一下解题思路:

首先,肯定得用二维数组来存放数字三角形

然后我们用D( r, j) 来表示第r行第 j 个数字(r,j均从1开始算)

我们用MaxSum(r, j)表示从D(r,j)到底边的各条路径中,最佳路径的数字之和。

因此,此题的最终问题就变成了求 MaxSum(1,1)

当我们看到这个题目的时候,首先想到的就是可以用简单的递归来解题:

D(r, j)出发,下一步只能走D(r+1,j)或者D(r+1, j+1)。故对于N行的三角形,我们可以写出如下的递归式:

if ( r == N)                
	MaxSum(r,j) = D(r,j);  
else      
	MaxSum( r, j) = Max{
    
     MaxSum(r+1,j), MaxSum(r+1,j+1) } + D(r,j);

完整代码

#include <iostream>  
#include <algorithm> 
#define MAX 101  
using namespace std; 
int D[MAX][MAX];  
int n;  
int MaxSum(int i, int j)
{
    
        
	if(i==n)  
		return D[i][j];    
	int x = MaxSum(i+1,j);    
	int y = MaxSum(i+1,j+1);    
	return max(x,y)+D[i][j];  
}
int main()
{
    
        
	int i,j;    
	cin >> n;    
	for(i=1;i<=n;i++)   
		for(j=1;j<=i;j++)        
			cin >> D[i][j];    
	cout << MaxSum(1,1) << endl;  
}      

如果提交,通过OJ对代码进行判断可能会显示代码运行超出时间限制。

原因是因为我们重复计算了,当我们在进行递归时,计算机帮我们计算的过程如下图:
在这里插入图片描述
就拿第三行数字1来说,当我们计算从第2行的数字3开始的MaxSum时会计算出从1开始的MaxSum,当我们计算从第二行的数字8开始的MaxSum的时候又会计算一次从1开始的MaxSum,也就是说有重复计算。这样就浪费了大量的时间。也就是说如果采用递规的方法,深度遍历每条路径,存在大量重复计算。则时间复杂度为 2的n次方,对于 n = 100 行,肯定超时。
在这里插入图片描述

#include <iostream>  
#include <algorithm> 
using namespace std;
#define MAX 101
int D[MAX][MAX];    
int n;  
int maxSum[MAX][MAX];
 
int MaxSum(int i, int j)
{
    
          
	if( maxSum[i][j] != -1 )         
		return maxSum[i][j];      
	if(i==n)   
		maxSum[i][j] = D[i][j];     
	else{
    
        
		int x = MaxSum(i+1,j);       
		int y = MaxSum(i+1,j+1);       
		maxSum[i][j] = max(x,y)+ D[i][j];     
	}     
	return maxSum[i][j]; 
} 
int main()
{
    
        
	int i,j;    
	cin >> n;    
	for(i=1;i<=n;i++)   
		for(j=1;j<=i;j++) 
		{
    
           
			cin >> D[i][j];       
			maxSum[i][j] = -1;   
		}    
	cout << MaxSum(1,1) << endl; 
} 

递归转递推
在这里插入图片描述

#include <iostream>  
#include <algorithm> 
using namespace std; 
 
#define MAX 101  
 
int D[MAX][MAX];   
int n;  
int maxSum[MAX][MAX]; 
int main()
{
    
        
	int i,j;    
	cin >> n;    
	for(i=1;i<=n;i++)   
		for(j=1;j<=i;j++)        
			cin >> D[i][j];   
	for( int i = 1;i <= n; ++ i )     
		maxSum[n][i] = D[n][i];   
	for( int i = n-1; i>= 1;  --i )     
		for( int j = 1; j <= i; ++j )         
			maxSum[i][j] = max(maxSum[i+1][j],maxSum[i+1][j+1]) + D[i][j];    
	cout << maxSum[1][1] << endl;  
} 

分析总结

递归到动规的一般转化方法为:
如果该递归函数有n个参数,那么就定义一个n维数组,数组下标是递归函数参数的取值范围(也就是数组每一维的大小).数组元素的值就是递归函数的返回值(初始化为一个标志值,表明还未被填充),这样就可以从边界值开始逐步的填充数组,相当于计算递归函数的逆过程(这和前面所说的推导过程应该是相同的).
适合使用动规求解的问题:
1,问题具有最优子结构
2,无后效性 说的花里胡哨的,其实一般遇到求最优解问题一般适合使用动态规划

动规解题的一般思路

1. 将原问题分解为子问题

把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。子问题都解决,原问题即解决(数字三角形例)。
子问题的解一旦求出就会被保存,所以每个子问题只需求解一次。
2.确定状态

在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状 态”。一个“状态”对应于一个或多个子问题, 所谓某个“状态”下的“值”,就是这个“状 态”所对应的子问题的解。
所有“状态”的集合,构成问题的“状态空间”。“状态空间”的大小,与用动态规划解决问题的时间复杂度直接相关。 在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个问题的状态空间里一共就有N×(N+1)/2个状态。
整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。

3.确定一些初始状态(边界状态)的值

以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。

4. 确定状态转移方程

 定义出什么是“状态”,以及在该“状态”下的“值”后,就要找出不同的状态之间如何迁移――即如何从一个或多个“值”已知的 “状态”,求出另一个“状态”的“值”(递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。

猜你喜欢

转载自blog.csdn.net/qq_45858803/article/details/110725436