Chapter2.4:数学模型考研参考题

此系列属于胡寿松《自动控制原理题海与考研指导》(第三版)习题精选,仅包含部分经典习题,需要完整版习题答案请自行查找,本系列属于知识点巩固部分,搭配如下几个系列进行学习,可用于期末考试和考研复习。
自动控制原理(第七版)知识提炼
自动控制原理(第七版)课后习题精选
自动控制原理(第七版)附录MATLAB基础



控制系统的数学模型考研参考题

REFERENCE1

设汽车缓振系统如下图所示,图中, m 1 m_1 m1为车厢及架重, m 2 m_2 m2为车轮及轮轴承重, k 1 、 k 2 k_1、k_2 k1k2分别为缓振簧和充气轮胎的刚度, f f f为缓振器黏性摩擦系数, x 3 x_3 x3为车厢位移, x 1 x_1 x1为路面函数。已知全部初始条件为零,求系统的传递函数 X 3 ( s ) / X 1 ( s ) X_3(s)/X_1(s) X3(s)/X1(s).
1
解:

根据力平衡原则,有如下微分方程组:
{ m 2 x ¨ 2 = k 2 ( x 1 − x 2 ) − k 1 ( x 2 − x 3 ) − f ( x ˙ 2 − x ˙ 3 ) m 1 x ¨ 3 = k 1 ( x 2 − x 3 ) + f ( x ˙ 2 − x ˙ 3 ) \begin{cases} &m_2\ddot{x}_2=k_2(x_1-x_2)-k_1(x_2-x_3)-f(\dot{x}_2-\dot{x}_3)\\ &m_1\ddot{x}_3=k_1(x_2-x_3)+f(\dot{x}_2-\dot{x}_3) \end{cases} { m2x¨2=k2(x1x2)k1(x2x3)f(x˙2x˙3)m1x¨3=k1(x2x3)+f(x˙2x˙3)
对上述微分方程组进行拉氏变换,及初始条件为零,可得:
{ m 2 s 2 X 2 ( s ) = − ( k 2 + k 1 ) X 2 ( s ) + k 2 X 1 ( s ) + k 1 X 3 ( s ) − f s [ X 2 ( s ) − X 3 ( s ) ] m 1 s 2 X 3 ( s ) = ( k 1 + f s ) X 2 ( s ) − ( k 1 + f s ) X 3 ( s ) \begin{cases} &m_2s^2X_2(s)=-(k_2+k_1)X_2(s)+k_2X_1(s)+k_1X_3(s)-fs[X_2(s)-X_3(s)]\\ &m_1s^2X_3(s)=(k_1+fs)X_2(s)-(k_1+fs)X_3(s) \end{cases} { m2s2X2(s)=(k2+k1)X2(s)+k2X1(s)+k1X3(s)fs[X2(s)X3(s)]m1s2X3(s)=(k1+fs)X2(s)(k1+fs)X3(s)
消去中间变量 X 2 ( s ) X_2(s) X2(s),可得传递函数为:
X 3 ( s ) X 1 ( s ) = k 2 ( f s + k 1 ) ( m 1 s 2 + f s + k 1 ) ( m 2 s 2 + f s + k 1 + k 2 ) − ( f s + k 1 ) 2 \frac{X_3(s)}{X_1(s)}=\frac{k_2(fs+k_1)}{(m_1s^2+fs+k_1)(m_2s^2+fs+k_1+k_2)-(fs+k_1)^2} X1(s)X3(s)=(m1s2+fs+k1)(m2s2+fs+k1+k2)(fs+k1)2k2(fs+k1)

REFERENCE 2

机电系统如下图所示, u ( t ) u(t) u(t)为输入电压; x ( t ) x(t) x(t)为输出位置; R 、 L R、L RL分别为铁心线圈的电阻与电感; m m m为物体的质量; k k k为弹簧的刚度; f f f为阻尼器的阻尼系数;功率放大器为理想放大器,增益为 F F F。假定铁心线圈的反电动势为 E = k 2 d x / d t E=k_2{\rm d}x/{\rm d}t E=k2dx/dt,线圈电流 i ( t ) i(t) i(t)在质量 m m m上产生的电磁力为 k 2 i ( t ) k_2i(t) k2i(t),设全部初始条件为零。
2

  1. 求该系统的传递函数 X ( s ) / U ( s ) X(s)/U(s) X(s)/U(s)
  2. 画出该系统的结构图;

解:

  1. 求传递函数。

    系统各环节的微分方程为:
    { F u ( t ) = R i + L d i d t + E E = k 2 d x d t k 2 i ( t ) = k x + f d x d t + m d 2 x d t 2 \begin{cases} &Fu(t)=Ri+L\displaystyle\frac{ {\rm d}i}{ {\rm d}t}+E\\ &E=k_2\displaystyle\frac{ {\rm d}x}{ {\rm d}t}\\ &k_2i(t)=kx+f\displaystyle\frac{ {\rm d}x}{ {\rm d}t}+m\displaystyle\frac{ {\rm d}^2x}{ {\rm d}t^2} \end{cases} Fu(t)=Ri+Ldtdi+EE=k2dtdxk2i(t)=kx+fdtdx+mdt2d2x
    零初始条件下,对上述微分方程进行拉氏变换:
    { F U ( s ) = ( R + L s ) I ( s ) + E ( s ) E ( s ) = k 2 s X ( s ) k 2 I ( s ) = ( k + f s + m s 2 ) X ( s ) \begin{cases} &FU(s)=(R+Ls)I(s)+E(s)\\ &E(s)=k_2sX(s)\\ &k_2I(s)=(k+fs+ms^2)X(s) \end{cases} FU(s)=(R+Ls)I(s)+E(s)E(s)=k2sX(s)k2I(s)=(k+fs+ms2)X(s)
    消去中间变量,可得系统的传递函数为:
    X ( s ) U ( s ) = F k 2 k 2 2 s + ( R + L s ) ( m s 2 + f s + k ) = k 2 F m L s 3 + ( L f + R m ) s 2 + ( k L + R f + k 2 2 ) s + R k \begin{aligned} \frac{X(s)}{U(s)}&=\frac{Fk_2}{k_2^2s+(R+Ls)(ms^2+fs+k)}\\&=\frac{k_2F}{mLs^3+(Lf+Rm)s^2+(kL+Rf+k_2^2)s+Rk} \end{aligned} U(s)X(s)=k22s+(R+Ls)(ms2+fs+k)Fk2=mLs3+(Lf+Rm)s2+(kL+Rf+k22)s+Rkk2F

  2. 系统结构图。

    系统结构图如下图所示:
    3

REFERENCE 3

系统结构图如下图所示,求系统传递函数 C ( s ) / R ( s ) C(s)/R(s) C(s)/R(s) C ( s ) / N ( s ) C(s)/N(s) C(s)/N(s).
4
解:

C ( s ) / R ( s ) C(s)/R(s) C(s)/R(s)

N ( s ) = 0 N(s)=0 N(s)=0,系统有一条前向通路,总增益为:
p 1 = G 1 G 2 G 3 G 4 G 5 p_1=G_1G_2G_3G_4G_5 p1=G1G2G3G4G5
有三个单独回路,回路增益分别为:
L 1 = − G 2 G 3 G 4 G 7 , L 2 = − G 1 G 2 G 3 G 4 G 5 G 8 , L 3 = G 4 G 5 G 6 L_1=-G_2G_3G_4G_7,L_2=-G_1G_2G_3G_4G_5G_8,L_3=G_4G_5G_6 L1=G2G3G4G7L2=G1G2G3G4G5G8L3=G4G5G6
没有不接触回路,且所有回路均与前向通路接触,故余因子式 Δ 1 = 1 \Delta_1=1 Δ1=1,流图特征式为:
Δ = 1 − ( L 1 + L 2 + L 3 ) = 1 + G 2 G 3 G 4 G 7 + G 1 G 2 G 3 G 4 G 5 G 8 − G 4 G 5 G 6 \Delta=1-(L_1+L_2+L_3)=1+G_2G_3G_4G_7+G_1G_2G_3G_4G_5G_8-G_4G_5G_6 Δ=1(L1+L2+L3)=1+G2G3G4G7+G1G2G3G4G5G8G4G5G6
系统传递函数为:
C ( s ) R ( s ) = p 1 Δ 1 Δ = G 1 G 2 G 3 G 4 G 5 1 + G 2 G 3 G 4 G 7 + G 1 G 2 G 3 G 4 G 5 G 8 − G 4 G 5 G 6 \frac{C(s)}{R(s)}=\frac{p_1\Delta_1}{\Delta}=\frac{G_1G_2G_3G_4G_5}{1+G_2G_3G_4G_7+G_1G_2G_3G_4G_5G_8-G_4G_5G_6} R(s)C(s)=Δp1Δ1=1+G2G3G4G7+G1G2G3G4G5G8G4G5G6G1G2G3G4G5
C ( s ) / N ( s ) C(s)/N(s) C(s)/N(s)

R ( s ) = 0 R(s)=0 R(s)=0,有: p 1 = G 3 G 4 G 5 p_1=G_3G_4G_5 p1=G3G4G5.则系统传递函数为:
C ( s ) N ( s ) = G 3 G 4 G 5 1 + G 2 G 3 G 4 G 7 + G 1 G 2 G 3 G 4 G 5 G 8 − G 4 G 5 G 6 \frac{C(s)}{N(s)}=\frac{G_3G_4G_5}{1+G_2G_3G_4G_7+G_1G_2G_3G_4G_5G_8-G_4G_5G_6} N(s)C(s)=1+G2G3G4G7+G1G2G3G4G5G8G4G5G6G3G4G5

REFERENCE 4

设系统结构图如下图所示,画出与结构图对应的信号流图,并求系统的传递函数 C ( s ) / R ( s ) C(s)/R(s) C(s)/R(s).
5
解:

信号流图
6
传递函数

系统有四条前向通路,总增益为:
p 1 = G 1 G 3 , p 2 = − G 1 G 2 , p 3 = G 4 H 2 G 1 G 3 , p 4 = − G 4 H 2 G 1 G 2 p_1=G_1G_3,p_2=-G_1G_2,p_3=G_4H_2G_1G_3,p_4=-G_4H_2G_1G_2 p1=G1G3,p2=G1G2,p3=G4H2G1G3,p4=G4H2G1G2
有两个与各前向通路接触的单独回路,回路增益为:
L 1 = − G 1 G 3 H 1 H 2 , L 2 = G 1 G 2 H 1 H 2 L_1=-G_1G_3H_1H_2,L_2=G_1G_2H_1H_2 L1=G1G3H1H2,L2=G1G2H1H2
没有不接触回路,余因子式为:
Δ 1 = Δ 2 = Δ 3 = Δ 4 = 1 \Delta_1=\Delta_2=\Delta_3=\Delta_4=1 Δ1=Δ2=Δ3=Δ4=1
流图特征式为:
Δ = 1 − ( L 1 + L 2 ) = 1 + G 1 G 3 H 1 H 2 − G 1 G 2 H 1 H 2 \Delta=1-(L_1+L_2)=1+G_1G_3H_1H_2-G_1G_2H_1H_2 Δ=1(L1+L2)=1+G1G3H1H2G1G2H1H2
根据梅森增益公式,系统传递函数为:
C ( s ) R ( s ) = 1 Δ ∑ i = 1 4 p i Δ i = G 1 G 3 − G 1 G 2 + G 1 G 3 G 4 H 2 − G 1 G 2 G 4 H 2 1 + G 1 G 3 H 1 H 2 − G 1 G 2 H 1 H 2 \frac{C(s)}{R(s)}=\frac{1}{\Delta}\displaystyle\sum_{i=1}^4p_i\Delta_i=\frac{G_1G_3-G_1G_2+G_1G_3G_4H_2-G_1G_2G_4H_2}{1+G_1G_3H_1H_2-G_1G_2H_1H_2} R(s)C(s)=Δ1i=14piΔi=1+G1G3H1H2G1G2H1H2G1G3G1G2+G1G3G4H2G1G2G4H2

REFERENCE 5

控制系统结构图如下图所示,求系统输出量 C ( s ) C(s) C(s)表达式.
7
解:

系统有三个单独回路,回路增益为:
L 1 = − G 1 , L 2 = − G 2 G 3 , L 3 = G 1 G 2 L_1=-G_1,L_2=-G_2G_3,L_3=G_1G_2 L1=G1,L2=G2G3,L3=G1G2
有两个互不接触回路,其回路增益为:
L 1 L 2 = − G 1 G 2 G 3 L_1L_2=-G_1G_2G_3 L1L2=G1G2G3
流图特征式为:
Δ = 1 − ( L 1 + L 2 + L 3 ) + L 1 L 2 = 1 + G 1 + G 2 G 3 − G 1 G 2 + G 1 G 2 G 3 \Delta=1-(L_1+L_2+L_3)+L_1L_2=1+G_1+G_2G_3-G_1G_2+G_1G_2G_3 Δ=1(L1+L2+L3)+L1L2=1+G1+G2G3G1G2+G1G2G3
R 2 ( s ) = 0 R_2(s)=0 R2(s)=0,从 R 1 ( s ) R_1(s) R1(s) C ( s ) C(s) C(s)有两条通路,其总增益及余因子式为:
p 1 = G 2 G 3 , Δ 1 = 1 − L 1 = 1 + G 1 p 2 = G 2 , Δ 2 = 1 \begin{aligned} &p_1=G_2G_3,\Delta_1=1-L_1=1+G_1\\ &p_2=G_2,\Delta_2=1 \end{aligned} p1=G2G3Δ1=1L1=1+G1p2=G2Δ2=1
R 1 ( s ) R_1(s) R1(s)作用下,系统输出量为:
C 1 ( s ) = 1 Δ ( p 1 Δ 1 + p 2 Δ 2 ) R 1 ( s ) = 1 Δ ( G 2 G 3 + G 1 G 2 G 3 + G 2 ) R 1 ( s ) C_1(s)=\frac{1}{\Delta}(p_1\Delta_1+p_2\Delta_2)R_1(s)=\frac{1}{\Delta}(G_2G_3+G_1G_2G_3+G_2)R_1(s) C1(s)=Δ1(p1Δ1+p2Δ2)R1(s)=Δ1(G2G3+G1G2G3+G2)R1(s)
R 1 ( s ) = 0 R_1(s)=0 R1(s)=0,从 R 2 ( s ) R_2(s) R2(s) C ( s ) C(s) C(s)有三条前向通路,其总增益及余因子式为:
p 1 = G 1 , Δ 1 = 1 − L 2 = 1 + G 2 G 3 p 2 = − G 1 G 2 G 3 , Δ 2 = 1 p 3 = − G 1 G 2 , Δ 3 = 1 \begin{aligned} &p_1=G_1,\Delta_1=1-L_2=1+G_2G_3\\ &p_2=-G_1G_2G_3,\Delta_2=1\\ &p_3=-G_1G_2,\Delta_3=1 \end{aligned} p1=G1,Δ1=1L2=1+G2G3p2=G1G2G3,Δ2=1p3=G1G2,Δ3=1
R 2 ( s ) R_2(s) R2(s)作用下,系统输出量为:
C 2 ( s ) = 1 Δ ( p 1 Δ 1 + p 2 Δ 2 + p 3 Δ 3 ) = 1 Δ ( G 1 − G 1 G 2 ) R 2 ( s ) \begin{aligned} C_2(s)&=\frac{1}{\Delta}(p_1\Delta_1+p_2\Delta_2+p_3\Delta_3)\\ &=\frac{1}{\Delta}(G_1-G_1G_2)R_2(s) \end{aligned} C2(s)=Δ1(p1Δ1+p2Δ2+p3Δ3)=Δ1(G1G1G2)R2(s)
因此,系统在 R 1 ( s ) 、 R 2 ( s ) R_1(s)、R_2(s) R1(s)R2(s)同时作用下,系统的输出量为:
C ( s ) = C 1 ( s ) + C 2 ( s ) = ( G 2 + G 2 G 3 + G 1 G 2 G 3 ) R 1 ( s ) + ( G 1 − G 1 G 2 ) R 2 ( s ) 1 + G 1 + G 2 G 3 − G 1 G 2 + G 1 G 2 G 3 C(s)=C_1(s)+C_2(s)=\frac{(G_2+G_2G_3+G_1G_2G_3)R_1(s)+(G_1-G_1G_2)R_2(s)}{1+G_1+G_2G_3-G_1G_2+G_1G_2G_3} C(s)=C1(s)+C2(s)=1+G1+G2G3G1G2+G1G2G3(G2+G2G3+G1G2G3)R1(s)+(G1G1G2)R2(s)

REFERENCE 6

系统结构图如下图所示, R ( s ) R(s) R(s)为输入量, N ( s ) N(s) N(s)为扰动量, C ( s ) C(s) C(s)为输出量。求系统总输出 C ( s ) C(s) C(s)的表达式.
8
解:

N ( s ) = 0 N(s)=0 N(s)=0时,前向通路总增益为:
p 1 = G 1 G 2 G 3 p_1=G_1G_2G_3 p1=G1G2G3
单独回路的增益为:
L 1 = − G 1 G 2 G 3 , L 2 = − G 1 G 2 G 6 , L 3 = − G 2 G 3 G 4 , L 4 = − G 1 G 5 L_1=-G_1G_2G_3,L_2=-G_1G_2G_6,L_3=-G_2G_3G_4,L_4=-G_1G_5 L1=G1G2G3,L2=G1G2G6,L3=G2G3G4,L4=G1G5
互不接触回路的增益为:
L 3 L 4 = G 1 G 2 G 3 G 4 G 5 L_3L_4=G_1G_2G_3G_4G_5 L3L4=G1G2G3G4G5
流图特征式为:
Δ = 1 − ∑ i = 1 4 L i + L 3 L 4 = 1 + G 1 G 2 G 3 + G 1 G 2 G 6 + G 2 G 3 G 4 + G 1 G 5 + G 1 G 2 G 3 G 4 G 5 \begin{aligned} \Delta&=1-\sum_{i=1}^4L_i+L_3L_4\\ &=1+G_1G_2G_3+G_1G_2G_6+G_2G_3G_4+G_1G_5+G_1G_2G_3G_4G_5 \end{aligned} Δ=1i=14Li+L3L4=1+G1G2G3+G1G2G6+G2G3G4+G1G5+G1G2G3G4G5
余因子式为:
Δ 1 = 1 \Delta_1=1 Δ1=1
由梅森增益公式可得系统传递函数:
C ( s ) R ( s ) = 1 Δ p 1 Δ 1 = 1 Δ G 1 G 2 G 3 \frac{C(s)}{R(s)}=\frac{1}{\Delta}p_1\Delta_1=\frac{1}{\Delta}G_1G_2G_3 R(s)C(s)=Δ1p1Δ1=Δ1G1G2G3
R ( s ) = 0 R(s)=0 R(s)=0时,前向通路总增益及余因子式为:
p 1 = G 2 G 3 , Δ 1 = 1 − L 4 = 1 + G 1 G 5 p_1=G_2G_3,\Delta_1=1-L_4=1+G_1G_5 p1=G2G3,Δ1=1L4=1+G1G5
由梅森增益公式可得系统传递函数:
C ( s ) N ( s ) = 1 Δ G 2 G 3 ( 1 + G 1 G 5 ) \frac{C(s)}{N(s)}=\frac{1}{\Delta}G_2G_3(1+G_1G_5) N(s)C(s)=Δ1G2G3(1+G1G5)
系统总输出为:
C ( s ) = G 1 G 2 G 3 R ( s ) + G 2 G 3 ( 1 + G 1 G 5 ) N ( s ) 1 + G 1 G 2 G 3 + G 1 G 2 G 6 + G 2 G 3 G 4 + G 1 G 5 + G 1 G 2 G 3 G 4 G 5 C(s)=\frac{G_1G_2G_3R(s)+G_2G_3(1+G_1G_5)N(s)}{1+G_1G_2G_3+G_1G_2G_6+G_2G_3G_4+G_1G_5+G_1G_2G_3G_4G_5} C(s)=1+G1G2G3+G1G2G6+G2G3G4+G1G5+G1G2G3G4G5G1G2G3R(s)+G2G3(1+G1G5)N(s)

REFERENCE 7

系统结构图如下图所示,求传递函数 C ( s ) / R ( s ) C(s)/R(s) C(s)/R(s).
9
解:

系统有六个单独回路,各回路增益为:
L 1 = − G 3 G 4 G 5 G 6 , L 2 = − G 3 , L 3 = G 5 , L 4 = − G 1 , L 5 = G 4 , L 6 = − G 1 G 4 G 5 G 6 \begin{aligned} &L_1=-G_3G_4G_5G_6,L_2=-G_3,L_3=G_5,L_4=-G_1,L_5=G_4,L_6=-G_1G_4G_5G_6 \end{aligned} L1=G3G4G5G6,L2=G3,L3=G5,L4=G1,L5=G4,L6=G1G4G5G6
有三个互不接触回路,各回路增益为:
L 2 L 3 = − G 3 G 5 , L 3 L 4 = − G 1 G 5 , L 3 L 5 = G 4 G 5 L_2L_3=-G_3G_5,L_3L_4=-G_1G_5,L_3L_5=G_4G_5 L2L3=G3G5,L3L4=G1G5,L3L5=G4G5
有四条前向通路,各总增益及余因子式为:
p 1 = G 3 G 4 G 5 , Δ 1 = 1 p 2 = G 1 G 4 G 5 , Δ 2 = 1 p 3 = G 3 G 4 G 2 , Δ 3 = 1 − G 5 p 4 = G 1 G 4 G 2 , Δ 4 = 1 − G 5 \begin{aligned} &p_1=G_3G_4G_5,\Delta_1=1\\ &p_2=G_1G_4G_5,\Delta_2=1\\ &p_3=G_3G_4G_2,\Delta_3=1-G_5\\ &p_4=G_1G_4G_2,\Delta_4=1-G_5 \end{aligned} p1=G3G4G5Δ1=1p2=G1G4G5Δ2=1p3=G3G4G2Δ3=1G5p4=G1G4G2Δ4=1G5
流图特征式为:
Δ = 1 − ∑ i = 1 6 L i + L 2 L 3 + L 3 L 4 + L 3 L 5 = 1 + G 3 G 4 G 5 G 6 + G 3 − G 5 + G 1 − G 4 + G 1 G 4 G 5 G 6 − G 3 G 5 − G 1 G 5 + G 4 G 5 \begin{aligned} \Delta&=1-\sum_{i=1}^6L_i+L_2L_3+L_3L_4+L_3L_5\\ &=1+G_3G_4G_5G_6+G_3-G_5+G_1-G_4+G_1G_4G_5G_6-G_3G_5-G_1G_5+G_4G_5 \end{aligned} Δ=1i=16Li+L2L3+L3L4+L3L5=1+G3G4G5G6+G3G5+G1G4+G1G4G5G6G3G5G1G5+G4G5
由梅森增益公式可得,系统传递函数为:
C ( s ) R ( s ) = 1 Δ ∑ i = 1 4 p i Δ i = ( G 1 + G 3 ) G 4 ( G 2 + G 5 − G 2 G 5 ) 1 + G 3 G 4 G 5 G 6 + G 3 − G 5 + G 1 − G 4 + G 1 G 4 G 5 G 6 − G 3 G 5 − G 1 G 5 + G 4 G 5 \begin{aligned} \frac{C(s)}{R(s)}&=\frac{1}{\Delta}\sum_{i=1}^4p_i\Delta_i\\ &=\frac{(G_1+G_3)G_4(G_2+G_5-G_2G_5)}{1+G_3G_4G_5G_6+G_3-G_5+G_1-G_4+G_1G_4G_5G_6-G_3G_5-G_1G_5+G_4G_5} \end{aligned} R(s)C(s)=Δ1i=14piΔi=1+G3G4G5G6+G3G5+G1G4+G1G4G5G6G3G5G1G5+G4G5(G1+G3)G4(G2+G5G2G5)

猜你喜欢

转载自blog.csdn.net/qq_39032096/article/details/127394002