一阶线性微分方程计算公式推导

一阶线性微分方程的形式如下:

y ′ + p ( x ) y = q ( x ) y'+p(x)y=q(x) y+p(x)y=q(x)


对于式子左侧,长得像下式,但不太一样

( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv

y ′ ⋅ 1 + y ⋅ p ( x ) y' ·1+y ·p(x) y1+yp(x)


这里对应 v v v看似得不到一个合适的,但是借助 [ e f ( x ) ] ′ = e f ( x ) ⋅ f ′ ( x ) [e^{f(x)}]'=e^{f(x)}·f'(x) [ef(x)]=ef(x)f(x)可以发现能构造出类似的,即下式

y ′ ⋅ e ∫ p ( x ) d x + y ⋅ e ∫ p ( x ) d x ⋅ p ( x ) y'·e^{\int p(x)dx}+y·e^{\int p(x)dx}·p(x) yep(x)dx+yep(x)dxp(x)

提出相同系数:

e ∫ p ( x ) d x ⋅ [ y ′ ⋅ 1 + y ⋅ p ( x ) ] e^{\int p(x)dx}·[y'·1+y·p(x)] ep(x)dx[y1+yp(x)]

原式等号右侧增补相同系数可得到式子整体(待化简)

e ∫ p ( x ) d x ⋅ [ y ′ ⋅ 1 + y ⋅ p ( x ) ] = e ∫ p ( x ) d x ⋅ q ( x ) e^{\int p(x)dx}·[y'·1+y·p(x)]=e^{\int p(x)dx}·q(x) ep(x)dx[y1+yp(x)]=ep(x)dxq(x)


于是化简得到:

[ y ⋅ e ∫ p ( x ) d x ] ′ = e ∫ p ( x ) d x ⋅ q ( x ) [y·e^{\int p(x)dx}]'=e^{\int p(x)dx}·q(x) [yep(x)dx]=ep(x)dxq(x)

左侧是求导,给积回去,右侧得添积分号:

y ⋅ e ∫ p ( x ) d x = ∫ e ∫ p ( x ) d x ⋅ q ( x ) d x + C y·e^{\int p(x)dx}=\int {e^{\int p(x)dx}·q(x)dx + C} yep(x)dx=ep(x)dxq(x)dx+C


将y系数化为1得最终结论通解公式

y = e − ∫ p ( x ) d x ⋅ ∫ e ∫ p ( x ) d x ⋅ q ( x ) d x + C y= e^{-\int p(x)dx}·\int {e^{\int p(x)dx}·q(x)dx + C} y=ep(x)dxep(x)dxq(x)dx+C

且通解就是全部解

猜你喜欢

转载自blog.csdn.net/qq_39377889/article/details/128807084