Integration using Feynman technique

求解积分:

∫ − ∞ + ∞ e − x 2 sin ⁡ 2 ( x 2 ) x 2 d x \int_{-\infty}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(x^{2}\right)}{x^{2}}\mathrm{d}x +x2ex2sin2(x2)dx

解:

令:

I = ∫ − ∞ + ∞ e − x 2 sin ⁡ 2 ( x 2 ) x 2 d x I=\int_{-\infty}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(x^{2}\right)}{x^{2}}\mathrm{d}x I=+x2ex2sin2(x2)dx

由于是偶函数,所以:

I = 2 ∫ 0 + ∞ e − x 2 sin ⁡ 2 ( x 2 ) x 2 d x I=2\int_{0}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(x^{2}\right)}{x^{2}}\mathrm{d}x I=20+x2ex2sin2(x2)dx

下面使用一个小技巧,即通过添加参数 t t t 拓展上述积分:

I ( t ) = 2 ∫ 0 + ∞ e − x 2 sin ⁡ 2 ( t x 2 ) x 2 d x I(t)=2\int_{0}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(tx^{2}\right)}{x^{2}}\mathrm{d}x I(t)=20+x2ex2sin2(tx2)dx

然后对上式等号左右进行微分:

d d t I ( t ) = d d t 2 ∫ 0 + ∞ e − x 2 sin ⁡ 2 ( t x 2 ) x 2 d x = 2 ∫ 0 + ∞ ∂ ∂ t e − x 2 sin ⁡ 2 ( t x 2 ) x 2 d x = 2 ∫ 0 + ∞ e − x 2 x 2 2 sin ⁡ ( t x 2 ) cos ⁡ ( t x 2 ) x 2 d x = 4 ∫ 0 + ∞ e − x 2 sin ⁡ ( t x 2 ) cos ⁡ ( t x 2 ) d x = 4 ∫ 0 + ∞ e − x 2 sin ⁡ ( 2 t x 2 ) d x \begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}I(t)&=\frac{\mathrm{d}}{\mathrm{d}t}2\int_{0}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(tx^{2}\right)}{x^{2}}\mathrm{d}x\\ &=2\int_{0}^{+\infty}\frac{\partial}{\partial t}\frac{e^{-x^{2}}\sin^{2}\left(tx^{2}\right)}{x^{2}}\mathrm{d}x\\ &=2\int_{0}^{+\infty}\frac{e^{-x^{2}}}{x^{2}}2\sin\left(tx^{2}\right)\cos\left(tx^{2}\right)x^{2}\mathrm{d}x\\ &=4\int_{0}^{+\infty}e^{-x^{2}}\sin\left(tx^{2}\right)\cos\left(tx^{2}\right)\mathrm{d}x\\ &=4\int_{0}^{+\infty}e^{-x^{2}}\sin\left(2tx^{2}\right)\mathrm{d}x\\ \end{aligned} dtdI(t)=dtd20+x2ex2sin2(tx2)dx=20+tx2ex2sin2(tx2)dx=20+x2ex22sin(tx2)cos(tx2)x2dx=40+ex2sin(tx2)cos(tx2)dx=40+ex2sin(2tx2)dx

由于:

e i x = cos ⁡ x + i sin ⁡ x e^{\mathrm{i}x}=\cos x+\mathrm{i}\sin x eix=cosx+isinx

所以:

I m [ e 2 i t x 2 ] = sin ⁡ ( 2 t x 2 ) \mathrm{Im}\left[e^{2\mathrm{i}tx^{2}}\right]=\sin\left(2tx^{2}\right) Im[e2itx2]=sin(2tx2)

代入积分方程中:

I ′ ( t ) = I m [ 4 ∫ 0 + ∞ e − x 2 e 2 i t x 2 d x ] = I m [ 4 ∫ 0 + ∞ e − x 2 ( 1 − 2 i t ) d x ] \begin{aligned} I'(t) &=\mathrm{Im}\left[4\int_{0}^{+\infty}e^{-x^{2}}e^{2\mathrm{i}tx^{2}}\mathrm{d}x\right]\\ &=\mathrm{Im}\left[4\int_{0}^{+\infty}e^{-x^{2}(1-2\mathrm{i}t)}\mathrm{d}x\right]\\ \end{aligned} I(t)=Im[40+ex2e2itx2dx]=Im[40+ex2(12it)dx]

考虑到:

∫ 0 + ∞ e − α x 2 d x = 1 2 π α \int_{0}^{+\infty}e^{-\alpha x^{2}}\mathrm{d}x=\frac{1}{2}\sqrt{\frac{\pi}{\alpha}} 0+eαx2dx=21απ

代入到前式中:

I ′ ( t ) = 2 π I m [ 1 1 − 2 i t ] \begin{aligned} I'(t) &=2\sqrt{\pi}\mathrm{Im}\left[\frac{1}{\sqrt{1-2\mathrm{i}t}}\right]\\ \end{aligned} I(t)=2π Im[12it 1]

将上式等号两端积分:

∫ 0 + ∞ d d t I ( t ) d t = I ( t ) = 2 π I m [ ∫ 0 + ∞ ( 1 − 2 i t ) − 1 / 2 d t ] = 2 π I m [ ( 1 − 2 i t ) 1 / 2 1 2 ( − 2 i ) + C ] = 2 π I m [ i ( 1 − 2 i t ) 1 / 2 ] + C \begin{aligned} \int_{0}^{+\infty}\frac{\mathrm{d}}{\mathrm{d}t}I(t)\mathrm{d}t &=I(t)\\ &=2\sqrt{\pi}\mathrm{Im}\left[\int_{0}^{+\infty}\left(1-2\mathrm{i}t\right)^{-1/2}\mathrm{d}t\right]\\ &=2\sqrt{\pi}\mathrm{Im}\left[\frac{(1-2\mathrm{i}t)^{1/2}}{\frac{1}{2}(-2\mathrm{i})}+C\right]\\ &=2\sqrt{\pi}\mathrm{Im}\left[\mathrm{i}(1-2\mathrm{i}t)^{1/2}\right]+C\\ \end{aligned} 0+dtdI(t)dt=I(t)=2π Im[0+(12it)1/2dt]=2π Im[21(2i)(12it)1/2+C]=2π Im[i(12it)1/2]+C

考虑到:

I ( t ) = 2 ∫ 0 + ∞ e − x 2 sin ⁡ 2 ( t x 2 ) x 2 d x I(t)=2\int_{0}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(tx^{2}\right)}{x^{2}}\mathrm{d}x I(t)=20+x2ex2sin2(tx2)dx

此时,令 t = 0 t=0 t=0

I ( t = 0 ) = 0 I(t=0)=0 I(t=0)=0

则前式的结果:

I ( t = 0 ) = 0 = 2 π I m [ i ( 1 − 2 i t ) 1 / 2 ] + C = 2 π I m [ i ] + C = 2 π + C \begin{aligned} I(t=0) &=0\\ &=2\sqrt{\pi}\mathrm{Im}\left[\mathrm{i}(1-2\mathrm{i}t)^{1/2}\right]+C\\ &=2\sqrt{\pi}\mathrm{Im}\left[\mathrm{i}\right]+C\\ &=2\sqrt{\pi}+C\\ \end{aligned} I(t=0)=0=2π Im[i(12it)1/2]+C=2π Im[i]+C=2π +C

由上得出:

C = − 2 π C=-2\sqrt{\pi} C=2π

则最初需要解决的积分:

I ( t = 1 ) = ∫ − ∞ + ∞ e − x 2 sin ⁡ 2 ( x 2 ) x 2 d x = 2 π I m [ i ( 1 − 2 i ) 1 / 2 ] − 2 π \begin{aligned} I(t=1) &=\int_{-\infty}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(x^{2}\right)}{x^{2}}\mathrm{d}x\\ &=2\sqrt{\pi}\mathrm{Im}\left[\mathrm{i}(1-2\mathrm{i})^{1/2}\right]-2\sqrt{\pi}\\ \end{aligned} I(t=1)=+x2ex2sin2(x2)dx=2π Im[i(12i)1/2]2π

设:

z = 1 − 2 i z=1-2\mathrm{i} z=12i

则:

∣ z ∣ = 1 2 + 2 2 = 5 A r g   z = tan ⁡ − 1 ( − 2 1 ) = − tan ⁡ − 1 ( 2 ) \left|z\right|=\sqrt{1^{2}+2^{2}}=\sqrt{5}\\ \mathrm{Arg}\ z=\tan^{-1}\left(\frac{-2}{1}\right)=-\tan^{-1}(2) z=12+22 =5 Arg z=tan1(12)=tan1(2)

所以:

z = 1 − 2 i = 5 e − i tan ⁡ − 1 ( 2 ) z=1-2\mathrm{i}=\sqrt{5}e^{-\mathrm{i}\tan^{-1}(2)} z=12i=5 eitan1(2)

所以:

1 − 2 i = 5 e − i tan ⁡ − 1 ( 2 ) 2 \sqrt{1-2\mathrm{i}}=\sqrt{\sqrt{5}}e^{-\mathrm{i}\frac{\tan^{-1}(2)}{2}} 12i =5 ei2tan1(2)

所以:

I m [ i 1 − 2 i ] = I m [ i 5 e − i tan ⁡ − 1 ( 2 ) 2 ] = 5 cos ⁡ ( tan ⁡ − 1 ( 2 ) 2 ) \begin{aligned} \mathrm{Im}\left[ \mathrm{i}\sqrt{1-2\mathrm{i}}\right] &=\mathrm{Im}\left[ \mathrm{i}\sqrt{\sqrt{5}}e^{-\mathrm{i}\frac{\tan^{-1}(2)}{2}}\right]\\ &=\sqrt{\sqrt{5}}\cos\left(\frac{\tan^{-1}(2)}{2}\right) \end{aligned} Im[i12i ]=Im[i5 ei2tan1(2)]=5 cos(2tan1(2))

所以:

I ( 1 ) = 2 π 5 cos ⁡ ( tan ⁡ − 1 ( 2 ) 2 ) − 2 π = 2 π 5 1 + 5 2 5 − 2 π = 2 π 1 + 5 2 − 2 π = 2 π ( 1 + 5 2 − 1 ) \begin{aligned} I(1) &=2\sqrt{\pi}\sqrt{\sqrt{5}}\cos\left(\frac{\tan^{-1}(2)}{2}\right)-2\sqrt{\pi}\\ &=2\sqrt{\pi}\sqrt{\sqrt{5}}\sqrt{\frac{1+\sqrt{5}}{2\sqrt{5}}}-2\sqrt{\pi}\\ &=2\sqrt{\pi}\sqrt{\frac{1+\sqrt{5}}{2}}-2\sqrt{\pi}\\ &=2\sqrt{\pi}\left(\sqrt{\frac{1+\sqrt{5}}{2}}-1\right)\\ \end{aligned} I(1)=2π 5 cos(2tan1(2))2π =2π 5 25 1+5 2π =2π 21+5 2π =2π 21+5 1


  • 参考文献

A beautiful calculus result: solution using Feynman’s technique

猜你喜欢

转载自blog.csdn.net/qq_32515081/article/details/130248304