ARM_串口解析器

 

 include/serial.h

#ifndef __UART4_H__
#define __UART4_H__

#include "stm32mp1xx_rcc.h"
#include "stm32mp1xx_gpio.h"
#include "stm32mp1xx_uart.h"



//引脚封装
#define GPIO_PIN_0 0
#define GPIO_PIN_1 1
#define GPIO_PIN_2 2
#define GPIO_PIN_3 3
#define GPIO_PIN_4 4
#define GPIO_PIN_5 5
#define GPIO_PIN_6 6
#define GPIO_PIN_7 7
#define GPIO_PIN_8 8
#define GPIO_PIN_9 9
#define GPIO_PIN_10 10
#define GPIO_PIN_11 11
#define GPIO_PIN_12 12
#define GPIO_PIN_13 13
#define GPIO_PIN_14 14
#define GPIO_PIN_15 15




//模式寄存器 0 1 2 3
typedef enum
{
	INPUT,
	OUTPUT,
	ALT,
	ANALOG,

}gpio_moder_t;

//输出类型寄存器
typedef enum
{
	PP, 	//推挽
	OD, 	//开漏
}gpio_otyper_t;

//输出速度寄存器
typedef enum
{
	LOW,
	MED,
	HIGH,
	VERY_HIGH,
}gpio_ospeedr_t;

//是否需要上下拉电阻寄存器封装
typedef enum
{
	NO_PUPDR, 	//禁止 0
	PU, 		//上拉 1
	PD, 		//下拉 2

}gpio_pupdr_t;

//输出高低电平寄存器封装
typedef enum
{
	GPIO_RESET_T, 	//输出低电平 0
	GPIO_SET_T, 	//输出高电平 1
}gpio_odr_t;

//寄存器初始化封装
typedef struct
{
	gpio_moder_t moder; 	//模式
	gpio_otyper_t otyper; 	//输出类型
	gpio_ospeedr_t ospeedr; //输出速率
	gpio_pupdr_t pupdr; 	//是否需要上下拉电阻

}gpio_init_t;






//结构体封装
typedef struct{
	char* cmd_arr;    //命令符字符串 
	gpio_t * gpio;  //gpio组号
	unsigned int pin; //对应的引脚编号
	gpio_odr_t status; //LED灯状态
	void (*gpio_write_p)(gpio_t * gpio,unsigned int pin, gpio_odr_t status);
}cmd_t;   





//灯的初始化GPIO初始化
void my_Initi_Led(gpio_t* gpiox,unsigned int pin,gpio_init_t* init);
//灯的设置高低电平
void hal_gpio_write(gpio_t* gpiox,unsigned int pin,unsigned int gpio_status);
//比较函数
int my_stmcmp(const char* str,const char* str2);
//查找命令函数
cmd_t* find_command(const char* str,cmd_t* cmd_arr);
//初始化相关操作
void hal_uart4_init();

//发送一个字符
void hal_put_char(const char str);

//发送一个字符串
void hal_put_string(const char *string);

//接收一个字符
char hal_get_char();

//接受一个字符串
char* hal_get_string();





#endif

src/serial.c


#include "serial.h"
//LED1---->GPIOE10
//LED2--->GPIOF10
//LED3--->GPIOE8
//PB2--->UART4_RX
//PG11--->UART4_TX
extern void delay_ms(int ms);

//灯的设置高低电平
void hal_gpio_write(gpio_t* gpiox,unsigned int pin,unsigned int gpio_status)
{
	//判断输入的值是否为低电平
	if(gpio_status == GPIO_RESET_T)
	{
		gpiox->ODR &= ~(0x1 << pin);
	}
	else
	{
		gpiox->ODR |= 0x1 << pin;
	}
}

//比较函数
int my_stmcmp(const char* str,const char* str2)
{
	int i=0;
	while(str[i]!='\0'&&str2[i]!='\0'&&str[i]==str2[i])
	{
		i++;
	}

	int ret = str[i]-str2[i];  //返回两个字符串ascii的差值}
	return ret;
	}
//查找命令函数
cmd_t* find_command(const char* str,cmd_t* cmd_arr)
{
	// 串口输入的字符串与结构体中的每个元素中的cmd_arr变量进行比较  
	//1.for遍历进行判断
	int i=0;
	for(i=0;i<6;i++)
	{
		int ret = my_stmcmp(str,cmd_arr[i].cmd_arr);
		if(ret == 0)
		{
			return &cmd_arr[i];
		}
	}

	return 0;
	//2.比较函数 strcmp,注意这个函数需要自己编写,因为裸机开发,没有函数库 
	//3.如果比较成功,返回结构体首地址
}

//初始化相关操作
void hal_uart4_init()
{

	//~~~~~~~~~~~~~RCC章节初始化~~~~~~~~~~~~~~~~~~~~~~~~//
	//使能AHB4初始化GPIOB GPIOG[1] [6] =1
	RCC->MP_AHB4ENSETR |= (0x21 << 1);   
	//使能APB1初始化[16]=1
	RCC->MP_APB1ENSETR |= (0x1 << 16); 

	//~~~~~~~~~~~~~GPIO章节初始化~~~~~~~~~~~~~~~~~~~~~~~//
	//GPIOB寄存器初始化 [5:4]=10
	GPIOB->MODER |= (0x1 << 5);         
	GPIOB->MODER &= (~(0x1 << 4));
	//GPIOB_AFRL设置引脚的复用功能模式[11:8]=1000
	GPIOB->AFRL |= (0x1 << 11);         
	GPIOB->AFRL &= (~(0x7 << 8));
	//GPIOG寄存器初始化 [23:22]=10
	GPIOG->MODER |= (0x1 << 23);       
	GPIOG->MODER &= (~(0x1 << 22));
	//GPIOG_AFRH设置引脚的复用功能模式[15:12]=0110
	GPIOG->AFRH |= (0xF << 15);         
	GPIOG->AFRH &= (~(0x9 << 15));   

	//~~~~~~~~~~~~~UART章节初始化~~~~~~~~~~~~~~~~~~~~~~//
	//0.设置串口UE=0 [0]=0
	if(USART4->CR1 & (0x1))
	{
		delay_ms(500);
		USART4->CR1 &= (~(0x1));
	}
	//1.设置1位的起始位,8位数据位 [28]=0 [12]=0 
	USART4->CR1 &= (~(0x1 << 12));
	USART4->CR1 &= (~(0x1 << 28));
	//2.没有校验位 CR1[10]=0
	USART4->CR1 &= (~(0x1 << 10));
	//3.设置1位停止位 CR2[13:12] =00
	USART4->CR2 &= (~(0x3 << 12));
	//4.设置16倍采样率 CR1[15]=0
	USART4->CR1 &= (~(0x1 << 15));
	//5.设置串口不分频 0000
	USART4->PRESC &= (~(0xF));
	//6.设置串口波特率为0x22b 时钟源/波特率  64000000/115200
	USART4->BRR = 0x22b;
	//7.设置串口发送器使能
	USART4->CR1 |= (0x1 << 3);
	//8.设置串口接收器使能
	USART4->CR1 |= (0x1 << 2);
	//9.设置串口使能
	USART4->CR1 |= (0x1);
}


//封装函数1功能:GPIO初始化相关操作
void my_Initi_Led(gpio_t* gpiox,unsigned int pin,gpio_init_t* init)
{
	//模式
	gpiox->MODER &= (~(0x3 << (2*pin)));
	gpiox->MODER |= (init->moder << (2*pin));
	//类型
	gpiox->OTYPER &= (~(0x1 << pin));
	gpiox->OTYPER |= (init->otyper << pin);
	//速度
	gpiox->OSPEEDR &= (~(0x3 << (2*pin)));
	gpiox->OSPEEDR |= (init->ospeedr << (2*pin));
	//上下拉电阻
	gpiox->PUPDR &= (~(0x3 << (2*pin)));
	gpiox->PUPDR |= (init->pupdr << (2*pin));
}



//封装函数2功能:GPIO引脚操作
void gpio_write_p(gpio_t* gpiox,unsigned int pin,gpio_odr_t gpio_status)
{
	if(gpio_status == GPIO_RESET_T)
	{
		gpiox->ODR &=  (~(0x1 << pin));
	}
	else
	{
		gpiox->ODR |= (0x1 << pin);
	}
}



//发送一个字符
void hal_put_char(const char str)
{
	//1.判断发送数据寄存器是否为空ISR[7]
	//特点:为空才可以发送下一位数据,为满则需要等待
	//读0:满,等待  读1:发送数据
	while(!(USART4->ISR & (0x1 << 7)));
	//2.将发送的内容,赋值给发送给数据寄存器
	USART4->TDR &= 0;  //寄存器清零
	USART4->TDR = str;
	//3.判断一帧数据是否发送完成 ISR[6]
	while(!(USART4->ISR & (0x1 << 6)));
	//读0:没有发送完成,需要等待  读1:发送完成
}


//接收一个字符
char hal_get_char()
{
	//1.判断接收数据寄存器是否接收到数据 ISR[5]
	while(!(USART4->ISR & (0x1 << 5)));
	//2.将接收数据寄存器中的内容读出来
	char ch = USART4->RDR;
	return ch;
}

//发送一个字符串
void hal_put_string(const char* string)
{
	//判断字符串输入完成标志'\0'
	const char *p = string;
	while(*p != '\0')
	{
		hal_put_char(*p);
		p++;
	}
	//一个字符一个字符进行发送
	hal_put_char('\r');
	hal_put_char('\n');
}

//接收一个字符串
char* hal_get_string()
{
	//循环进行接收
	static char string[32] = {0};
	int i;
	for(i = 0;i<32;i++)
	{
		string[i] = 0;
	}
	i = 0;
	while(1)
	{
		string[i] = hal_get_char();//板子接收
		hal_put_char(string[i]); //发送到串口工具中
		if(string[i] == '\r')
		{
			break;
		}
		i++;
	}
	string[i] = '\0';
	hal_put_char('\n');
	return string;
	//当键盘的回车键按键之后,代表字符串输出完成'\r'
}

main.c

#include "serial.h"

extern void printf(const char *fmt, ...);
void delay_ms(int ms)
{
	int i,j;
	for(i = 0; i < ms;i++)
		for (j = 0; j < 1800; j++);
}
void init_Led()
{
	//通过RCC章节 将GPIOE GPIOF 组控制器使能
	RCC->MP_AHB4ENSETR |= (0x3 << 4);
	//结构体初始化
	gpio_init_t init = {OUTPUT,PP,LOW,NO_PUPDR};
	//调用函数初始化
	my_Initi_Led(GPIOE,GPIO_PIN_10, &init);
	my_Initi_Led(GPIOF,GPIO_PIN_10, &init);
	my_Initi_Led(GPIOE,GPIO_PIN_8, &init);
}
//对结构体进行初始化
cmd_t cmd_arr[6] = {
	[0] = {
		.cmd_arr = "led1on",
		.gpio = GPIOE,
		.pin  = GPIO_PIN_10,
		.status = GPIO_SET_T,
		.gpio_write_p = hal_gpio_write,
	},
	[1] = {
		.cmd_arr = "led2on",
		.gpio = GPIOF,
		.pin  = GPIO_PIN_10,
		.status = GPIO_SET_T,
		.gpio_write_p = hal_gpio_write,
	},
	[2] = {
		.cmd_arr = "led3on",
		.gpio = GPIOE,
		.pin  = GPIO_PIN_8,
		.status = GPIO_SET_T,
		.gpio_write_p = hal_gpio_write,
	},
	[3] = {
		.cmd_arr = "led1off",
		.gpio = GPIOE,
		.pin  = GPIO_PIN_10,
		.status = GPIO_RESET_T,
		.gpio_write_p = hal_gpio_write,
	},
	[4] = {
		.cmd_arr = "led2off",
		.gpio = GPIOF,
		.pin  = GPIO_PIN_10,
		.status = GPIO_RESET_T,
		.gpio_write_p = hal_gpio_write,
	},
	[5] = {
		.cmd_arr = "led3off",
		.gpio = GPIOE,
		.pin  = GPIO_PIN_8,
		.status = GPIO_RESET_T,
		.gpio_write_p = hal_gpio_write,
	},
};

int main()
{	
	init_Led();
	hal_uart4_init();
	hal_put_string("----please input--->");
	while(1)
	{
		char *string = 0;
		string = hal_get_string();
		cmd_t *p = 0;
		p = find_command(string,cmd_arr);
		if(p == 0)
		{
			printf("there are not found\n");
		}
		else
		{
			p->gpio_write_p(p->gpio,p->pin,p->status);
		}
	}
	return 0;
}

 result

猜你喜欢

转载自blog.csdn.net/lsw2604190117/article/details/131586694
今日推荐