C基础-11

一、状态机设计模式

  状态机模式是一种行为模式,通过多态实现不同状态的调转行为的确是一种很好的方法,只可惜在嵌入式环境下,有时只能写纯C代码,并且还需要考虑代码的重入和多任务请求跳转等情形,因此实现起来着实需要一番考虑。

    近日在看了一个开源系统时,看到了一个状态机的实现,也学着写了一个,与大家分享。

    首先,分析一下一个普通的状态机究竟要实现哪些内容。

    状态机存储从开始时刻到现在的变化,并根据当前输入,决定下一个状态。这意味着,状态机要存储状态、获得输入(我们把它叫做跳转条件)、做出响应。

    如上图所示,{s1, s2, s3}均为状态,箭头c1/a1表示在s1状态、输入为c1时,跳转到s2,并进行a1操作。

    最下方为一组输入,状态机应做出如下反应:

 

    当某个状态遇到不能识别的输入时,就默认进入陷阱状态,在陷阱状态中,不论遇到怎样的输入都不能跳出。

    为了表达上面这个自动机,我们定义它们的状态和输入类型:

typedef int State;
typedef int Condition;

#define STATES 3 + 1
#define STATE_1 0
#define STATE_2 1
#define STATE_3 2
#define STATE_TRAP 3

#define CONDITIONS 2
#define CONDITION_1 0
#define CONDITION_2 1

   在嵌入式环境中,由于存储空间比较小,因此把它们全部定义成宏。此外,为了降低执行时间的不确定性,我们使用O(1)的跳转表来模拟状态的跳转。

    首先定义跳转类型:

typedef void (*ActionType)(State state, Condition condition);

typedef struct
{
    State next;
    ActionType action;
} Trasition, * pTrasition;

​​​​​​​    然后按照上图中的跳转关系,把三个跳转加一个陷阱跳转先定义出来:​​​​​​​

// (s1, c1, s2, a1)
Trasition t1 = {
    STATE_2,
    action_1
};

// (s2, c2, s3, a2)
Trasition t2 = {
    STATE_3,
    action_2
};

// (s3, c1, s2, a3)
Trasition t3 = {
    STATE_2,
    action_3
};

// (s, c, trap, a1)
Trasition tt = {
    STATE_TRAP,
    action_trap
};

    其中的动作,由用户自己完成,在这里仅定义一条输出语句。​​​​​​​

void action_1(State state, Condition condition)
{
printf("Action 1 triggered.\n");
}

    最后定义跳转表:​​​​​​​

pTrasition transition_table[STATES][CONDITIONS] = {
/*      c1,  c2*/
/* s1 */&t1, &tt,
/* s2 */&tt, &t2,
/* s3 */&t3, &tt,
/* st */&tt, &tt,
};

    即可表达上文中的跳转关系。

    最后定义状态机,如果不考虑多任务请求,那么状态机仅需要存储当前状态便行了。

    例如:​​​​​​​

typedef struct
{
    State current;
} StateMachine, * pStateMachine;

State step(pStateMachine machine, Condition condition)
{
    pTrasition t = transition_table[machine->current][condition];
    (*(t->action))(machine->current, condition);
    machine->current = t->next;
return machine->current;
}

    但是考虑到当一个跳转正在进行的时候,同时又有其他任务请求跳转,则会出现数据不一致的问题。      whaosoft aiot http://143ai.com

    举个例子:task1(s1, c1/a1 –> s2)和task2(s2, c2/a2 –> s3)先后执行,是可以顺利到达s3状态的,但若操作a1运行的时候,执行权限被task2抢占,则task2此时看到的当前状态还是s1,s1遇到c2就进入陷阱状态,而不会到达s3了,也就是说,状态的跳转发生了不确定,这是不能容忍的。

    因此要重新设计状态机,增加一个“事务中”条件和一个用于存储输入的条件队列。修改后的代码如下:​​​​​​​

#define E_OK        0
#define E_NO_DATA   1
#define E_OVERFLOW  2

typedef struct
{
    Condition queue[QMAX];
int head;
int tail;
bool overflow;
} ConditionQueue, * pConditionQueue;


int push(ConditionQueue * queue, Condition c)
{   
unsigned int flags;
    Irq_Save(flags);
if ((queue->head == queue->tail + 1) || ((queue->head == 0) && (queue->tail == 0)))
    {
queue->overflow = true;
        Irq_Restore(flags);
return E_OVERFLOW;
    }
else
    {
queue->queue[queue->tail] = c;
queue->tail = (queue->tail + 1) % QMAX;
        Irq_Restore(flags);
    }
return E_OK;
}

int poll(ConditionQueue * queue, Condition * c)
{
unsigned int flags;
    Irq_Save(flags);
if (queue->head == queue->tail)
    {
        Irq_Restore(flags);
return E_NO_DATA;
    }
else
    {
        *c = queue->queue[queue->head];
queue->overflow = false;
queue->head = (queue->head + 1) % QMAX;
        Irq_Restore(flags);
    }
return E_OK;
}

typedef struct
{
    State current;
bool inTransaction;
    ConditionQueue queue;
} StateMachine, * pStateMachine;

static State __step(pStateMachine machine, Condition condition)
{
    State current = machine -> current;
    pTrasition t = transition_table[current][condition];
    (*(t->action))(current, condition);
    current = t->next;
    machine->current = current;
return current;
}

State step(pStateMachine machine, Condition condition)
{
    Condition next_condition;
int status;
    State current;
if (machine->inTransaction)
    {
        push(&(machine->queue), condition);
return STATE_INTRANSACTION;
    }
else
    {
        machine->inTransaction = true;
        current = __step(machine, condition);
        status = poll(&(machine->queue), &next_condition);
while(status == E_OK)
        {
            __step(machine, next_condition);
            status = poll(&(machine->queue), &next_condition);
        }
        machine->inTransaction = false;
return current;
    }
}

void initialize(pStateMachine machine, State s)
{
    machine->current = s;
    machine->inTransaction = false;
    machine->queue.head = 0;
    machine->queue.tail = 0;
    machine->queue.overflow = false;
}

猜你喜欢

转载自blog.csdn.net/qq_29788741/article/details/131756573
今日推荐