HDFS探索理解

1、分布式文件系统(HDFS)的引入:

数据量越来越多,在一个操作系统管辖的范围存不下了,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,因此迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。

是一种允许文件通过网络在多台主机上分享的文件系统,可让多机器上的多用户分享文件和存储空间。

通透性。让实际上是通过网络来访问文件的动作,由程序与用户看来,就像是访问本地的磁盘一般。

容错。即使系统中有某些节点脱机,整体来说系统仍然可以持续运作而不会有数据损失。

分布式文件管理系统很多,hdfs只是其中一种。适用于一次写入多次查询的情况,不支持并发写情况,小文件不合适。

2、HDFS架构

NameNode 、DataNode 、Secondary NameNode

3、元数据存储细节

扫描二维码关注公众号,回复: 1903425 查看本文章

4、NameNode

是整个文件系统的管理节点。它维护着整个文件系统的文件目录树,文件/目录的元信息和每个文件对应的数据块列表。接收用户的操作请求。文件包括:

fsimage:元数据镜像文件。存储某一时段NameNode内存元数据信息。

edits:操作日志文件。

fstime:保存最近一次checkpoint的时间

以上这些文件是保存在linux的文件系统中。

5、NameNode的工作特点

Namenode始终在内存中保存metedata,用于处理“读请求”

到有“写请求”到来时,namenode会首先写editlog到磁盘,即向edits文件中写日志,成功返回后,才会修改内存,并且向客户端返回

NameNode维护了文件与数据块的映射表以及数据块与数据节点的映射表,什么意思呢?就是一个文件,它切分成了几个数据块,以及这些数据块分别存储在哪些datanode上,namenode一清二楚。Fsimage就是在某一时刻,整个hdfs 的快照,就是这个时刻hdfs上所有的文件块和目录,分别的状态,位于哪些个datanode,各自的权限,各自的副本个数。然后客户端对hdfs所有的更新操作,比如说移动数据,或者删除数据,都会记录在edits中。

为了避免edits不断增大,secondarynamenode会周期性合并fsimage和edits成新的fsimage,新的操作记录会写入新的editlog中,这个周期可以自己设置(editlog到达一定大小或者定时)。

6、SecondaryNameNode:

HA的一个解决方案。但不支持热备。配置即可。

执行过程:从NameNode上下载元数据信息(fsimage,edits),然后把二者合并,生成新的fsimage,在本地保存,并将其推送到NameNode,替换旧的fsimage.

默认在安装在NameNode节点上,但这样...不安全!

7、secondary namenode的工作流程

secondary通知namenode切换edits文件

secondary从namenode获得fsimage和edits(通过http)

secondary将fsimage载入内存,然后开始合并edits

secondary将新的fsimage发回给namenode

namenode用新的fsimage替换旧的fsimage

8、什么时候checkpiont

fs.checkpoint.period 指定两次checkpoint的最大时间间隔,默认3600秒。

fs.checkpoint.size    规定edits文件的最大值,一旦超过这个值则强制checkpoint,不管是否到达最大时间间隔。默认大小是64M。

9、Datanode

提供真实文件数据的存储服务。

文件块(block):最基本的存储单位。对于文件内容而言,一个文件的长度大小是size,那么从文件的0偏移开始,按照固定的大小,顺序对文件进行划分并编号,划分好的每一个块称一个Block。HDFS默认Block大小是128MB,以一个256MB文件,共有256/128=2个Block.

dfs.block.size

不同于普通文件系统的是,HDFS中,如果一个文件小于一个数据块的大小,并不占用整个数据块存储空间

Replication。多复本。默认是三个。hdfs-site.xml的dfs.replication属性

datanode节点超时时间设置:

datanode进程死亡或者网络故障造成datanode无法与namenode通信,

namenode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长。

HDFS默认的超时时长为10分钟+30秒。如果定义超时时间为timeout,则超时时长的计算公式为:

         timeout  = 2 * heartbeat.recheck.interval + 10 *dfs.heartbeat.interval。

         而默认的heartbeat.recheck.interval大小为5分钟,dfs.heartbeat.interval默认为3秒。

         需要注意的是hdfs-site.xml配置文件中的

         heartbeat.recheck.interval的单位为毫秒,

         dfs.heartbeat.interval的单位为秒。

         所以,举个例子,如果heartbeat.recheck.interval设置为5000(毫秒),dfs.heartbeat.interval设置为3(秒,默认),则总的超时时间为40秒。

         hdfs-site.xml中的参数设置格式:

<property>

<name>heartbeat.recheck.interval</name>

<value>2000</value>

</property>

<property>

<name>dfs.heartbeat.interval</name>

<value>1</value>

</property>

HDFS冗余数据块的自动删除

某个节点由于网络故障或者DataNode进程死亡,被NameNode判定为死亡,HDFS马上自动开始数据块的容错拷贝;当该节点重新添加到集群中时,由于该节点上的数据其实并没有损坏,所以造成了HDFS上某些block的备份数超过了设定的备份数。通过观察发现,这些多余的数据块经过很长的一段时间才会被完全删除掉。

那么这个时间取决于什么呢?该时间的长短跟数据块报告的间隔时间有关。Datanode会定期将当前该结点上所有的BLOCK信息报告给Namenode,参数dfs.blockreport.intervalMsec就是控制这个报告间隔的参数。hdfs-site.xml文件中有一个参数:

<property>

<name>dfs.blockreport.intervalMsec</name>

<value>10000</value>

<description>Determines block reporting interval inmilliseconds.</description>

</property>

其中3600000为默认设置,3600000毫秒,即1个小时,也就是说,块报告的时间间隔为1个小时,所以经过了很长时间这些多余的块才被删除掉。通过实际测试发现,当把该参数调整的稍小一点的时候(60秒),多余的数据块确实很快就被删除了。

10、什么是RPC(Remote Procedure Call)?

RPC——远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发包括网络分布式多程序在内的应用程序更加容易。

RPC采用客户机/服务器模式。请求程序就是一个客户机,而服务提供程序就是一个服务器。首先,客户机调用进程发送一个有进程参数的调用信息到服务进程,然后等待应答信息。在服务器端,进程保持睡眠状态直到调用信息的到达为止。当一个调用信息到达,服务器获得进程参数,计算结果,发送答复信息,然后等待下一个调用信息,最后,客户端调用进程接收答复信息,获得进程结果,然后调用执行继续进行。

hadoop的整个体系结构就是构建在RPC之上的(见org.apache.hadoop.ipc)

11、HDFS读过程

1)  初始化FileSystem,然后客户端(client)用FileSystem的open()函数打开文件

2)  FileSystem用RPC调用元数据节点,得到文件的数据块信息,对于每一个数据块,元数据节点返回保存数据块的数据节点的地址。

3)  FileSystem返回FSDataInputStream给客户端,用来读取数据,客户端调用stream的read()函数开始读取数据。

4)  DFSInputStream连接保存此文件第一个数据块的最近的数据节点,data从数据节点读到客户端(client)。

5)  当此数据块读取完毕时,DFSInputStream关闭和此数据节点的连接,然后连接此文件下一个数据块的最近的数据节点。

6)  当客户端读取完毕数据的时候,调用FSDataInputStream的close函数。

7)  在读取数据的过程中,如果客户端在与数据节点通信出现错误,则尝试连接包含此数据块的下一个数据节点。

8)  失败的数据节点将被记录,以后不再连接。

12、HDFS写过程:

1)  初始化FileSystem,客户端调用create()来创建文件

2)  FileSystem用RPC调用元数据节点,在文件系统的命名空间中创建一个新的文件,元数据节点首先确定文件原来不存在,并且客户端有创建文件的权限,然后创建新文件。

3)  FileSystem返回DFSOutputStream,客户端用于写数据,客户端开始写入数据。

4)  DFSOutputStream将数据分成块,写入data queue。dataqueue由Data Streamer读取,并通知元数据节点分配数据节点,用来存储数据块(每块默认复制3块)。分配的数据节点放在一个pipeline里。Data Streamer将数据块写入pipeline中的第一个数据节点。第一个数据节点将数据块发送给第二个数据节点。第二个数据节点将数据发送给第三个数据节点。

5)  DFSOutputStream为发出去的数据块保存了ack queue,等待pipeline中的数据节点告知数据已经写入成功。

6)  当客户端结束写入数据,则调用stream的close函数。此操作将所有的数据块写入pipeline中的数据节点,并等待ack queue返回成功。最后通知元数据节点写入完毕。

7)  如果数据节点在写入的过程中失败,关闭pipeline,将ack queue中的数据块放入data queue的开始,当前的数据块在已经写入的数据节点中被元数据节点赋予新的标示,则错误节点重启后能够察觉其数据块是过时的,会被删除。失败的数据节点从pipeline中移除,另外的数据块则写入pipeline中的另外两个数据节点。元数据节点则被通知此数据块是复制块数不足,将来会再创建第三份备份。

 

13、机架感知:

1.背景

    Hadoop在设计时考虑到数据的安全与高效,数据文件默认在HDFS上存放三份,存储策略为本地一份,同机架内其它某一节点上一份,不同机架的某一节点上一份。这样如果本地数据损坏,节点可以从同一机架内的相邻节点拿到数据,速度肯定比从跨机架节点上拿数据要快;同时,如果整个机架的网络出现异常,也能保证在其它机架的节点上找到数据。为了降低整体的带宽消耗和读取延时,HDFS会尽量让读取程序读取离它最近的副本。如果在读取程序的同一个机架上有一个副本,那么就读取该副本。如果一个HDFS集群跨越多个数据中心,那么客户端也将首先读本地数据中心的副本。

那么Hadoop是如何确定任意两个节点是位于同一机架,还是跨机架的呢?

答案就是机架感知。默认情况下,hadoop的机架感知是没有被启用的。所以,在通常情况下,hadoop集群的HDFS在选机器的时候,是随机选择的,也就是说,很有可能在写数据时,hadoop将第一块数据block1写到了rack1上,然后随机的选择下将block2写入到了rack2下,此时两个rack之间产生了数据传输的流量,再接下来,在随机的情况下,又将block3重新又写回了rack1,此时,两个rack之间又产生了一次数据流量。在job处理的数据量非常的大,或者往hadoop推送的数据量非常大的时候,这种情况会造成rack之间的网络流量成倍的上升,成为性能的瓶颈,进而影响作业的性能以至于整个集群的服务

2.配置

默认情况下,namenode启动时候日志是这样的:

2013-09-22 17:27:26,423 INFOorg.apache.hadoop.net.NetworkTopology: Adding a new node:  /default-rack/ 192.168.147.92:50010

每个IP 对应的机架ID都是 /default-rack ,说明hadoop的机架感知没有被启用。要将hadoop机架感知的功能启用,配置非常简单,在 NameNode所在节点的/home/bigdata/apps/hadoop/etc/hadoop的core-site.xml配置文件中配置一个选项:

<property>

 <name>topology.script.file.name</name>

 <value>/home/bigdata/apps/hadoop/etc/hadoop/topology.sh</value>

</property>

这个配置选项的value指定为一个可执行程序,通常为一个脚本,该脚本接受一个参数,输出一个值。接受的参数通常为某台datanode机器的ip地址,而输出的值通常为该ip地址对应的datanode所在的rack,例如”/rack1”。Namenode启动时,会判断该配置选项是否为空,如果非空,则表示已经启用机架感知的配置,此时namenode会根据配置寻找该脚本,并在接收到每一个datanode的heartbeat时,将该datanode的ip地址作为参数传给该脚本运行,并将得到的输出作为该datanode所属的机架ID,保存到内存的一个map中。至于脚本的编写,就需要将真实的网络拓朴和机架信息了解清楚后,通过该脚本能够将机器的ip地址和机器名正确的映射到相应的机架上去。

3.增加数据节点,不重启NameNode

改NameNode节点的topology.data的配置,加入:192.168.147.69dbj69 /dc1/rack2,保存。

4.节点间距离计算

有了机架感知,NameNode就可以画出下图所示的datanode网络拓扑图。D1,R1都是交换机,最底层是datanode。则H1的rackid=/D1/R1/H1,H1的parent是R1,R1的是D1。这些rackid信息可以通过topology.script.file.name配置。有了这些rackid信息就可以计算出任意两台datanode之间的距离,得到最优的存放策略,优化整个集群的网络带宽均衡以及数据最优分配。

distance(/D1/R1/H1,/D1/R1/H1)=0  相同的datanode

distance(/D1/R1/H1,/D1/R1/H2)=2  同一rack下的不同datanode

distance(/D1/R1/H1,/D1/R2/H4)=4  同一IDC下的不同datanode

distance(/D1/R1/H1,/D2/R3/H7)=6  不同IDC下的datanode


猜你喜欢

转载自blog.csdn.net/qq_16753341/article/details/80915002