吴恩达作业5:正则化和dropout

构建了三层神经网络来验证正则化和dropout对防止过拟合的作用。
首先看数据集,reg_utils.py包含产生数据集函数,前向传播,计算损失值等,代码如下:
import numpy as np
import matplotlib.pyplot as plt
import h5py
import sklearn
import sklearn.datasets
import sklearn.linear_model
import scipy.io

def sigmoid(x):
    """
    Compute the sigmoid of x

    Arguments:
    x -- A scalar or numpy array of any size.

    Return:
    s -- sigmoid(x)
    """
    s = 1/(1+np.exp(-x))
    return s

def relu(x):
    """
    Compute the relu of x

    Arguments:
    x -- A scalar or numpy array of any size.

    Return:
    s -- relu(x)
    """
    s = np.maximum(0,x)
    
    return s

def load_planar_dataset(seed):
    
    np.random.seed(seed)
    
    m = 400 # number of examples
    N = int(m/2) # number of points per class
    D = 2 # dimensionality
    X = np.zeros((m,D)) # data matrix where each row is a single example
    Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
    a = 4 # maximum ray of the flower

    for j in range(2):
        ix = range(N*j,N*(j+1))
        t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
        r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
        X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
        Y[ix] = j
        
    X = X.T
    Y = Y.T

    return X, Y

def initialize_parameters(layer_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network
    
    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    W1 -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                    b1 -- bias vector of shape (layer_dims[l], 1)
                    Wl -- weight matrix of shape (layer_dims[l-1], layer_dims[l])
                    bl -- bias vector of shape (1, layer_dims[l])
                    
    Tips:
    - For example: the layer_dims for the "Planar Data classification model" would have been [2,2,1]. 
    This means W1's shape was (2,2), b1 was (1,2), W2 was (2,1) and b2 was (1,1). Now you have to generalize it!
    - In the for loop, use parameters['W' + str(l)] to access Wl, where l is the iterative integer.
    """
    
    np.random.seed(3)
    parameters = {}
    L = len(layer_dims) # number of layers in the network

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) / np.sqrt(layer_dims[l-1])
        parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
        
        assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1])
        assert(parameters['W' + str(l)].shape == layer_dims[l], 1)

        
    return parameters

def forward_propagation(X, parameters):
    """
    Implements the forward propagation (and computes the loss) presented in Figure 2.
    
    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape ()
                    b1 -- bias vector of shape ()
                    W2 -- weight matrix of shape ()
                    b2 -- bias vector of shape ()
                    W3 -- weight matrix of shape ()
                    b3 -- bias vector of shape ()
    
    Returns:
    loss -- the loss function (vanilla logistic loss)
    """
        
    # retrieve parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]
    
    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)
    
    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)
    
    return A3, cache

def backward_propagation(X, Y, cache):
    """
    Implement the backward propagation presented in figure 2.
    
    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    cache -- cache output from forward_propagation()
    
    Returns:
    gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
    """
    m = X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
    
    dZ3 = A3 - Y
    dW3 = 1./m * np.dot(dZ3, A2.T)
    db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
    
    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1./m * np.dot(dZ2, A1.T)
    db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
    
    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1./m * np.dot(dZ1, X.T)
    db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)
    
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
                 "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
                 "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}
    
    return gradients

def update_parameters(parameters, grads, learning_rate):
    """
    Update parameters using gradient descent
    
    Arguments:
    parameters -- python dictionary containing your parameters:
                    parameters['W' + str(i)] = Wi
                    parameters['b' + str(i)] = bi
    grads -- python dictionary containing your gradients for each parameters:
                    grads['dW' + str(i)] = dWi
                    grads['db' + str(i)] = dbi
    learning_rate -- the learning rate, scalar.
    
    Returns:
    parameters -- python dictionary containing your updated parameters 
    """
    
    n = len(parameters) // 2 # number of layers in the neural networks

    # Update rule for each parameter
    for k in range(n):
        parameters["W" + str(k+1)] = parameters["W" + str(k+1)] - learning_rate * grads["dW" + str(k+1)]
        parameters["b" + str(k+1)] = parameters["b" + str(k+1)] - learning_rate * grads["db" + str(k+1)]
        
    return parameters

def predict(X, y, parameters):
    """
    This function is used to predict the results of a  n-layer neural network.
    
    Arguments:
    X -- data set of examples you would like to label
    parameters -- parameters of the trained model
    
    Returns:
    p -- predictions for the given dataset X
    """
    
    m = X.shape[1]
    p = np.zeros((1,m), dtype = np.int)
    
    # Forward propagation
    a3, caches = forward_propagation(X, parameters)
    
    # convert probas to 0/1 predictions
    for i in range(0, a3.shape[1]):
        if a3[0,i] > 0.5:
            p[0,i] = 1
        else:
            p[0,i] = 0

    # print results

    #print ("predictions: " + str(p[0,:]))
    #print ("true labels: " + str(y[0,:]))
    print("Accuracy: "  + str(np.mean((p[0,:] == y[0,:]))))
    
    return p

def compute_cost(a3, Y):
    """
    Implement the cost function
    
    Arguments:
    a3 -- post-activation, output of forward propagation
    Y -- "true" labels vector, same shape as a3
    
    Returns:
    cost - value of the cost function
    """
    m = Y.shape[1]
    
    logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)
    cost = 1./m * np.nansum(logprobs)
    
    return cost

def load_dataset():
    train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
    train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels

    test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
    test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels

    classes = np.array(test_dataset["list_classes"][:]) # the list of classes
    
    train_set_y = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    test_set_y = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
    
    train_set_x_orig = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
    test_set_x_orig = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
    
    train_set_x = train_set_x_orig/255
    test_set_x = test_set_x_orig/255

    return train_set_x, train_set_y, test_set_x, test_set_y, classes


def predict_dec(parameters, X):
    """
    Used for plotting decision boundary.
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    X -- input data of size (m, K)
    
    Returns
    predictions -- vector of predictions of our model (red: 0 / blue: 1)
    """
    
    # Predict using forward propagation and a classification threshold of 0.5
    a3, cache = forward_propagation(X, parameters)
    predictions = (a3>0.5)
    return predictions

def load_planar_dataset(randomness, seed):
    
    np.random.seed(seed)
    
    m = 50
    N = int(m/2) # number of points per class
    D = 2 # dimensionality
    X = np.zeros((m,D)) # data matrix where each row is a single example
    Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
    a = 2 # maximum ray of the flower

    for j in range(2):
        
        ix = range(N*j,N*(j+1))
        if j == 0:
            t = np.linspace(j, 4*3.1415*(j+1),N) #+ np.random.randn(N)*randomness # theta
            r = 0.3*np.square(t) + np.random.randn(N)*randomness # radius
        if j == 1:
            t = np.linspace(j, 2*3.1415*(j+1),N) #+ np.random.randn(N)*randomness # theta
            r = 0.2*np.square(t) + np.random.randn(N)*randomness # radius
            
        X[ix] = np.c_[r*np.cos(t), r*np.sin(t)]
        Y[ix] = j
        
    X = X.T
    Y = Y.T

    return X, Y

def plot_decision_boundary(model, X, y):
    # Set min and max values and give it some padding
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
    plt.show()
    
def load_2D_dataset():
    data = scipy.io.loadmat('datasets/data.mat')
    train_X = data['X'].T
    train_Y = data['y'].T
    test_X = data['Xval'].T
    test_Y = data['yval'].T

    #plt.scatter(train_X[0, :], train_X[1, :], c=np.squeeze(train_Y), s=40, cmap=plt.cm.Spectral);
    
    return train_X, train_Y, test_X, test_Y

调用数据集,代码如下:

import numpy as np
import reg_utils
import matplotlib.pyplot as plt
import testCases
import sklearn
import sklearn.datasets
train_X, train_Y, test_X, test_Y=reg_utils.load_2D_dataset()
print('训练样本={}'.format(train_X.shape))
print('训练样本标签={}'.format(train_Y.shape))
print('测试样本={}'.format(test_X.shape))
plt.show()

打印结果:

第一种方法不用正则化和dropout即lambda=0,keep_prob=1,代码如下

import numpy as np
import reg_utils
import matplotlib.pyplot as plt
import testCases
import sklearn
import sklearn.datasets
train_X, train_Y, test_X, test_Y=reg_utils.load_2D_dataset()
print('训练样本={}'.format(train_X.shape))
print('训练样本标签={}'.format(train_Y.shape))
print('测试样本={}'.format(test_X.shape))
# plt.show()
"""
初始化权重 方差为2/n
"""
def initialize_parameters_he(layers_dims):
    L=len(layers_dims)
    parameters={}
    for i in range(1,L):
        parameters['W'+str(i)]=np.random.randn(layers_dims[i],layers_dims[i-1])\
                               *np.sqrt(2.0/layers_dims[i-1])
        parameters['b' + str(i)]=np.zeros((layers_dims[i],1))
    return parameters
'''
计算损失值:带有L2正则项的损失值
'''
def compute_cost_with_regularization(A3,Y,parameters,lambd):
    m=Y.shape[1]
    W1 = parameters['W1']
    W2 = parameters['W2']
    W3 = parameters['W3']
    cost_entropy=reg_utils.compute_cost(A3, Y)
    #cost_regularize = np.sum(np.sum(np.square(Wl)) for Wl in [W1, W2, W3]) * lambd / (2 * m)
    cost_regularize=np.sum(np.sum(np.square(Wl)) for Wl in [W1,W2,W3])* lambd / (2 * m)
    cost=cost_entropy+cost_regularize
    return cost
"""
前向传播带有dropout
"""
def forward_propagation_with_dropout(X,paremeters,keep_prob):
    W1 = paremeters['W1']
    b1 = paremeters['b1']
    W2 = paremeters['W2']
    b2 = paremeters['b2']
    W3 = paremeters['W3']
    b3 = paremeters['b3']
    Z1=np.dot(W1,X)+b1
    A1=reg_utils.relu(Z1)
    D1=np.random.rand(A1.shape[0],A1.shape[1])#np.random.rand 输出值在0 1之间
    D1=(D1<keep_prob)    # 返回的是 true false
    #去掉A1上的一些神经元 只剩下 要的和0
    A1=np.multiply(A1,D1)
    #放大回去 确保A1的期望值不变
    A1=A1/keep_prob

    Z2 = np.dot(W2, A1) + b2
    A2 = reg_utils.relu(Z2)
    D2 = np.random.rand(A2.shape[0], A2.shape[1])
    D2 = (D2 < keep_prob)  # 返回的是 true false
    A2 = np.multiply(A2, D2)
    A2 = A2 / keep_prob

    Z3 = np.dot(W3, A2) + b3
    A3=reg_utils.sigmoid(Z3)
    cache=(Z1,D1,A1,W1,b1,Z2,D2,A2,W2,b2,Z3,A3,W3,b3,)
    return A3,cache
'''
后向传播:带有dropout
'''
def back_propagation_with_dropout(X,Y,cache,keep_prob):
    m=X.shape[1]
    (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3,)=cache
    dZ3 = 1. / m * (A3 - Y)
    dW3 = np.dot(dZ3, A2.T)
    db3 = np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dA2=np.multiply(dA2,D2)
    dA2=dA2/keep_prob
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = np.dot(dZ2, A1.T)
    db2 = np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dA1 = np.multiply(dA1, D1)
    dA1 = dA1 / keep_prob
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = np.dot(dZ1, X.T)
    db1 = np.sum(dZ1, axis=1, keepdims=True)
    gradients={'dZ3':dZ3,'dW3':dW3,'db3':db3,'dA2':dA2,'dZ2':dZ2,
              'dW2':dW2,'db2':db2,'dA1':dA1,'dZ1':dZ1,'dW1':dW1,'db1':db1}
    return gradients
"""
后向传播带有L2正则项
"""
def back_propagation_with_regularization(X,Y,lambd,cache):
    m=X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
    #X,W1,A1,W2,A2,W3,A3=cache
    dZ3=1./m *(A3-Y)
    dW3=np.dot(dZ3,A2.T)+W3*(lambd/m)
    db3=np.sum(dZ3, axis=1, keepdims = True)

    dA2=np.dot(W3.T,dZ3)
    dZ2=np.multiply(dA2,np.int64(A2 > 0))
    dW2=np.dot(dZ2,A1.T)+W2*(lambd/m)#由此可看处 lambda越大 W的惩罚越大
    db2 = np.sum(dZ2, axis=1, keepdims=True)

    dA1=np.dot(W2.T,dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = np.dot(dZ1, X.T) + W1 * (lambd / m)
    db1 = np.sum(dZ1, axis=1, keepdims=True)
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}
    return gradients
"""
构建模型
"""
def model(X,Y,num_iterations,learning_rate,lambd=0,keep_prob=1):
    layers_dims=[X.shape[0], 20, 3, 1]
    parameters=initialize_parameters_he(layers_dims)
    costs=[]
    for i in range(num_iterations):
        if keep_prob==1:
            A3, cache=reg_utils.forward_propagation(X, parameters)
        elif keep_prob<1:
            A3, cache=forward_propagation_with_dropout(X, parameters, keep_prob)
        if lambd==0:
            cost = reg_utils.compute_cost(A3, Y)
        else:
            cost=compute_cost_with_regularization(A3,Y,parameters,lambd)
        if lambd==0 and keep_prob==1:
            gradients=reg_utils.backward_propagation(X, Y, cache)
        elif lambd!=0:
            gradients=back_propagation_with_regularization(X, Y, lambd, cache)
        elif keep_prob<1:
            gradients=back_propagation_with_dropout(X,Y,cache,keep_prob)
        parameters=reg_utils.update_parameters(parameters, gradients, learning_rate)
        if i%1000==0:
            print('after {} iterations cost is {}'.format(i,cost))
            costs.append(cost)
    plt.plot(costs)
    plt.xlabel('num_iterations')
    plt.ylabel('costs')
    plt.title('learning rate is {}'.format(str(learning_rate)))
    plt.show()
    return parameters

def test():
#######test compute_cost_with_regularization
    # a3, Y_assess, parameters=testCases.compute_cost_with_regularization_test_case()
    # cost=compute_cost_with_regularization(a3, Y_assess, parameters,0.1)
    # print(cost)
########################
#######back_propagation_with_regularization
    # X_assess, Y_assess, cache=testCases.backward_propagation_with_regularization_test_case()
    # gradients=back_propagation_with_regularization(X_assess, Y_assess,0.7,cache)
    # print('dw1={} dw2={} dw3={}'.format(gradients['dW1'],gradients['dW2'],gradients['dW3']))
###################test forward_propagation_with_dropout
    # X_assess, parameters=testCases.forward_propagation_with_dropout_test_case()
    # A3, cache=forward_propagation_with_dropout(X_assess, parameters,keep_prob=0.7)
    # print('A3={}'.format(A3))
###################test backward_propagation_with_dropout
    X_assess, Y_assess, cache=testCases.backward_propagation_with_dropout_test_case()
    gradients=back_propagation_with_dropout(X_assess, Y_assess, cache,keep_prob=0.8)
    print('dA1={}'.format(gradients['dA1']))
    print('dA2={}'.format(gradients['dA2']))
"""
测试模型
"""
def test_model():
    parameters = model(train_X, train_Y, num_iterations=30000, learning_rate=0.3, lambd=0,keep_prob=1)
    print('on the train sample')
    train_prediction=reg_utils.predict(train_X, train_Y,parameters)
    print('on the test sample')
    test_prediction = reg_utils.predict(test_X, test_Y, parameters)
if __name__=='__main__':
    #test()
    test_model()
    #pass

打印结果:可看出过拟合了

lambda=0.7,keep_prob=1打印结果:可看出减少了过拟合

lambda=0.keep_prob=0.86,打印结果:可看出dropout也能减少过拟合。

猜你喜欢

转载自blog.csdn.net/fanzonghao/article/details/81079757