ConcurrentHashMapJDK1.8源码解析

我们先看一下它无参构造函数

public ConcurrentHashMap() {
    }

可以看到并未对hash表进行初始化。

我们再看一下它的put方法

 public V put(K key, V value) {
        return putVal(key, value, false);
    }

进入putVal方法。

 final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException(); // key与value不可为null
        int hash = spread(key.hashCode());  //key的hash的计算
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();   第一次put进入这个方法,初始化table
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {//如果该桶位置为空,则直接放入
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED)  //如果发现正在扩容,帮助扩容
                tab = helpTransfer(tab, f);
            else {//否则就是发生hash冲突
                V oldVal = null;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {  //判断是不是链表,顺着链表找,若发现相同的key则更新value,否则找到链表尾就添加这个映射
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {  //判断是不是红黑树
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) { //判断需不需要转红黑树
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount); //hash元素数+1
        return null;
    }

我们看一下key 的计算方法。

static final int spread(int h) {
        return (h ^ (h >>> 16)) & HASH_BITS; 用key的hashCode与他自己右移16位的与再与HASH_BITS进行与运算,HASH_BITS = 0x7fffffff
    }

我们看一下初始化方法initTable。

private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
            if ((sc = sizeCtl) < 0) //表示有线程正在执行初始化操作,将其他线程挂起,hash只能有一个线程执行初始化操作。
                Thread.yield(); // lost initialization race; just spin
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {利用CAS操作将sizeCtl值置为-1,表示本线程正在执行初始化
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;  //当sc大于0,hash表初始化为sc,否则初始化为DEFAULT_CAPACITY=16
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        sc = n - (n >>> 2);   //sc设置为0.75n.
                    }
                } finally {
                    sizeCtl = sc;  //0.75*n,相当于扩容的阈值
                }
                break;
            }
        }
        return tab;
    }

我们看一下addCount方法。

private final void addCount(long x, int check) {
        CounterCell[] as; long b, s;
        if ((as = counterCells) != null ||  //完成hash元素数+1操作
            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
            CounterCell a; long v; int m;
            boolean uncontended = true;
            if (as == null || (m = as.length - 1) < 0 ||
                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                !(uncontended =
                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                fullAddCount(x, uncontended);
                return;
            }
            if (check <= 1)
                return;
            s = sumCount();
        }
        if (check >= 0) {
            Node<K,V>[] tab, nt; int n, sc;
            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                   (n = tab.length) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                }
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                             (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);  //扩容
                s = sumCount();
            }
        }
我们看一下transfer方法。
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];  //扩容为原来的2倍,即2*n
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;  //transferIndex为如果有下一个线程参与扩容,开始迁移的下标位置,从原hash表尾部开始
        }
        int nextn = nextTab.length;
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);  //如果一个桶位置上位fwd,则表示该桶已被迁移
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            while (advance) { //不停的从原hash表尾部往前找
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            else if ((f = tabAt(tab, i)) == null)//若原hash表该桶为null,置为fwd,
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)  //若为fwd,表示已迁移过
                advance = true; // already processed
            else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {  //链表
                        Node<K,V> ln, hn; //形成两个链表,
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln); //一个链表放在i位置
                            setTabAt(nextTab, i + n, hn);//一个放在i+n位置
                            setTabAt(tab, i, fwd);  //该桶位置置为fwd,表示已经迁移过,下一个线程到这个桶直接跳过
                            advance = true;
                        }
                        else if (f instanceof TreeBin) {  //红黑树
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

这里画一张图,帮助理解上面的两个链表的特点和原链表的区别。


这里可以看出,lastrun后面的结点是和原链表一样的,前面的都被逆序了。可以看一下Node的构造方法,有助于理解。

到最后原hash表的所有桶都被置为fwd,迁移就结束了。

其中stride为步长,意思就是一个线程管stride范围内的桶的迁移工作。而transferIndex为下一个线程开始迁移的位置。



参考:https://www.jianshu.com/p/f6730d5784ad

猜你喜欢

转载自blog.csdn.net/qq_32998153/article/details/79842130