神经网络学习(十三)卷积神经网络的MATLAB实现

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/hoho1151191150/article/details/79714691

系列博客是博主学习神经网络中相关的笔记和一些个人理解,仅为作者记录笔记之用,不免有很多细节不对之处。

卷积神经网络回顾

上一节,我们简单探讨了卷积神经网络的反向传播算法,本节我们着手实现了一个简单的卷积神经网,在此之前先以最基本的批量随机梯度下降法+L2正则化对对卷积神经网络的反向传播算法做一个很简单回顾。

需要确定参数有:

  • 小批量数据的大小 m
  • CNN模型的层数 L 和所有隐藏层的类型
  • 对于卷积层,要定义卷积核的大小 k ,卷积核子矩阵的维度 d ,填充大小 p ,步幅 s
  • 对于池化层,要定义池化区域大小 h 和池化标准(max 或者 mean)
  • 对于全连接层,要定义全连接层的激活函数和各层的神经元个数
  • 对于输出层,要定义输出函数和代价函数,多分类任务一般采用 softmax 函数和交叉熵代价函数 C = y ln ( a )
  • 超参数:学习速率 η , 惩罚系数 λ ,最大迭代次数 max_iter, 和停止条件 ϵ

计算步骤
1. 初始化每个隐含层的 W , b 的值为随机数。一般可以采用标准正态分布进行初始化(选用 1 ( n i n ) 进行来缩放优化初始值),也可以采用 ( ξ , ξ ) 的均匀分布( ξ 取小值)
2.正向传播
2.1).将输入数据 x 赋值于输入神经元 a 1 , a 1 = x
2.2).从第二层开始,根据下面3种情况进行前向传播计算:

  • 如果当前是全连接层:则有 a l = σ ( z l ) = σ ( W l a l 1 + b l )
  • 如果当前是卷积层:则有 a l = σ ( z l ) = σ ( W l a l 1 + b l )
  • 如果当前是池化层:则有 a l = pool ( a l 1 )
2.3).对于输出层第 L 层,计算输出 a L = softmax ( z l ) = softmax ( W l a l 1 + b l )

3. 反向传播
3.1).通过损失函数计算输出层的 δ L
3.2).从倒数第二层开始,根据下面3种情况逐层进行反向传播计算:

  • 如果当前是全连接层:则有 δ l = ( W l + 1 ) T δ l + 1 σ ( z l )
  • 如果上层是卷积层:则有 δ l = δ l + 1 rot180 ( W l + 1 ) σ ( z l )
  • 如果上层是池化层:则有 δ l = upsample ( δ l + 1 ) σ ( z l )
4. 根据以下两种情况进行模型更新
4.1).如果当前是全连接层:
W l = ( 1 η λ n ) W l η m [ δ l ( a l 1 ) T ]
b l = b l η m ( δ l )
4.2).如果当前是卷积层,对于每一个卷积核有:
W l = ( 1 η λ n ) W l η m [ δ l rot90 ( a l 1 , 2 ) ]
b l = b l η m [ mean ( δ l ) ]

MATLAB实现

限于个人能力,我们目前先实现一个简单的 1+N 结构的卷积神经网络,即 1 个卷积层(包括池化层)和 N个全连接层。下面是这个简单网络的结构

这里写图片描述
下面对各层做简要的说明:
1、 卷积层:无padding,步幅 stride 设置为 1,激活函数选择ReLU函数
2、 池化层:无padding,池化类型只实现 ‘average’ 方法
3、 展铺层:为方便计算设计的层,属于预先分配的内存空间,作为全连接层的输入
4、 全连接层:激活函数为Sigmoid函数
5、 输出层:分类函数选择Softmax函数,代价函数选择交叉熵代价函数+L2正则化

网络定义的MATLAB代码如下:

loadMnistDataScript; %加载数据
ntrain = size(training_data_label,2);
mini_batch_size = 100;
cnn.ntrain = ntrain;
cnn.eta = 1;       %学习速率
cnn.lambda = 5;    %正则化惩罚系数

cnn.layer = {
    % input layer: 'input', mini_size, [height,width] of image
    {'input',mini_batch_size,[28,28]};
    % convlution layer: 'conv', kernel_number, [height,width] of kernel
    {'conv',20,[9,9]};
    % pooling layer: 'pool', pooling_type, [height,width] of pooling area
    {'pool','average',[2,2]};
    % flatten layer: 'flat', a layer for pre-allocated memory
    {'flat'};
    % full connect layer: 'full', neuron number
    {'full',100};
    {'full',100};
    % output layer: 'output', neuron number
    {'output',10};
    };

由于变量过多,将cnn设计为一个结构体,包含的成员变量有
1、cnn.layer:网络结构的定义,元胞数组;
2、cnn.z:每一层的带权输入,元胞数组;
3、cnn.a:每一层的输出,元胞数组;
4、cnn.delta::每一层的误差敏感项,元胞数组;
5、cnn.weights:每一层的权重。元胞数组;
6、cnn.biases:每一层的偏置,元胞数组;
7、cnn.nabla_w:权重的梯度,元胞数组;
8、cnn.nabla_b:偏置的梯度,元胞数组;
9、其他一些超参数
这样每一层包含7个量:带权输入( z ),输出( a ),误差( δ ),权重( W ),偏置( b ),权重梯度( W ),偏置梯度( b )。并不是每一层都实际需要这7个量,不需要的层将其设置为空数组即可,下面是网络初始化的过程,假如第 n 层为:
1、输入层:

a{n} = zeros([ImageHeight, ImageWidth, mini_batch_size])

2、卷积层:

ImageHeight = ImageHeight – KernelHeight+1
ImageWidth = ImageWidth– KernelWidth+1
z{n} = zeros([ImageHeight, ImageWidth, mini_batch_size, kernel_number])
a{n} = zeros([ImageHeight, ImageWidth, mini_batch_size, kernel_number])
delta{n} = zeros([ImageHeight, ImageWidth, mini_batch_size, kernel_number])
weights{n} = rand([KernelHeight, KernelWidth, kernel_number])-0.5
nabla_w =zeros( [KernelHeight, KernelWidth, kernel_number])
biases{n} = rand([1, kernel_number])-0.5
nabla_b{n} =zeros( [1, kernel_number])

3、池化层

ImageHeight = ImageHeight / KernelHeight
mageWidth = ImageWidth / KernelWidth
a{n} = zeros([ImageHeight, ImageWidth, mini_batch_size, kernel_number])
delta{n} = zeros([ImageHeight, ImageWidth, mini_batch_size, kernel_number])

4、展铺层

a{n} = zeros([ImageHeight*ImageWidth* kernel_number, mini_batch_size])
delta{n} = zeros([ImageHeight*ImageWidth* kernel_number, mini_batch_size])

5、全连接层和输出层

z{n} = zeros([neuron_number, mini_batch_size])
a{n} = zeros([neuron_number, mini_batch_size])
delta{n} = zeros([neuron_number, mini_batch_size])
weights{n} = rand([neuron_number,prev_layer_neuron_number])-0.5
nabla_w{n} = zeros([neuron_number,prev_layer_neuron_number])
biases{n} = rand([neuron_number,1])-0.5
nabla_b{n} = zeros([neuron_number,1])

下面是详细代码

function cnn = cnn_initialize(cnn)
%CNN_INIT initialize the weights and biases, and other parameters
%   
index = 0;
num_layer = numel(cnn.layer);
for in = 1:num_layer
    switch cnn.layer{in}{1}
        case 'input'
            index = index + 1;
            height = cnn.layer{in}{3}(1);
            width = cnn.layer{in}{3}(2);
            mini_size = cnn.layer{in}{2};
            cnn.weights{index} = [];
            cnn.biases{index} = [];
            cnn.nabla_w{index} = [];
            cnn.nabla_b{index} = [];
            %n*n*m
            cnn.a{index} = [];
            cnn.z{index} = [];
            cnn.delta{index} = [];
            cnn.mini_size = mini_size;
        case 'conv'
            index = index + 1;
            %kernel height, width, number
            ker_height = cnn.layer{in}{3}(1);
            ker_width = cnn.layer{in}{3}(2);
            ker_num = cnn.layer{in}{2};
            cnn.weights{index} = grand(ker_height,ker_width,ker_num) - 0.5;
            cnn.biases{index} = grand(1,ker_num) - 0.5;
            cnn.nabla_w{index} = zeros(ker_height,ker_width,ker_num);
            cnn.nabla_b{index} = zeros(1,ker_num);
            height = height - ker_height + 1;
            width = width - ker_width + 1;
            cnn.a{index} = zeros(height,width,mini_size,ker_num);
            cnn.z{index} = zeros(height,width,mini_size,ker_num);
            cnn.delta{index} = zeros(height,width,mini_size,ker_num);
        case 'pool'
            index = index + 1;
            %kernel height, width, number
            ker_height = cnn.layer{in}{3}(1);
            ker_width = cnn.layer{in}{3}(2);
            cnn.weights{index} = [];
            cnn.biases{index} = [];
            cnn.nabla_w{index} = [];
            cnn.nabla_b{index} = [];
            height = height / ker_height;
            width = width / ker_width;
            cnn.a{index} = zeros(height,width,mini_size,ker_num);
            cnn.z{index} = [];
            cnn.delta{index} = zeros(height,width,mini_size,ker_num);
        case 'flat'
            index = index + 1;
            cnn.weights{index} = [];
            cnn.biases{index} = [];
            cnn.nabla_w{index} = [];
            cnn.nabla_b{index} = [];

            cnn.a{index} = zeros(height*width*ker_num,mini_size);
            cnn.z{index} = [];
            cnn.delta{index} = zeros(height*width*ker_num,mini_size);
        case 'full'
            index = index + 1;
            %kernel height, width, number
            neuron_num = cnn.layer{in}{2};
            neuron_num0 = size(cnn.a{in-1},1);

            cnn.weights{index} = grand(neuron_num,neuron_num0) - 0.5;
            cnn.biases{index} = grand(neuron_num,1) - 0.5;
            cnn.nabla_w{index} = zeros(neuron_num,neuron_num0);
            cnn.nabla_b{index} = zeros(neuron_num,1);

            cnn.a{index} = zeros(neuron_num,mini_size);
            cnn.z{index} = zeros(neuron_num,mini_size);
            cnn.delta{index} = zeros(neuron_num,mini_size);

        case 'output'
             index = index + 1;
            %kernel height, width, number
            neuron_num = cnn.layer{in}{2};
            neuron_num0 = size(cnn.a{in-1},1);

            cnn.weights{index} = grand(neuron_num,neuron_num0) - 0.5;
            cnn.biases{index} = grand(neuron_num,1);
            cnn.nabla_w{index} = zeros(neuron_num,neuron_num0);
            cnn.nabla_b{index} = zeros(neuron_num,1);

            cnn.a{index} = zeros(neuron_num,mini_size);
            cnn.z{index} = zeros(neuron_num,mini_size);
            cnn.delta{index} = zeros(neuron_num,mini_size);
        otherwise

    end
end
end

下面是正向计算过程(伪代码),假设第 n 层为
1、输入层:

a{n} = x 

2、卷积层:

z{n} = conv(weights{n}*a{n-1})+biases{n} 
a{n} = relu(z{n}) 

3、池化层

a{n}=pool(a{n-1}) %程序中同样使用卷积实现的 

4、展铺层

a{n} = reshape(a{n-1}) 

5、全连接层

  z{n} = weights{n}*a{n-1}+biases{n} 
  a{n} = sigmoid(z{n})  

6、输出层

z{n} = weights{n}*a{n-1}+biases{n} 
a{n} = softmax(z{n}) 

具体代码如下:

function cnn = cnn_feedforward(cnn,x)
%CNN_FEEDFORWARD CNN feedforward
%   
num = numel(cnn.layer);
for in = 1:num

switch cnn.layer{in}{1}
    case 'input'
        cnn.a{in} = x;
     case 'conv'
         kernel_num = cnn.layer{in}{2};
         for ik = 1:kernel_num
             cnn.z{in}(:,:,:,ik) = convn(cnn.a{in-1},...
                 cnn.weights{in}(:,:,ik),'valid')+cnn.biases{in}(ik);
         end
         cnn.a{in} = relu(cnn.z{in});

     case 'pool'

         ker_h = cnn.layer{in}{3}(1);
         ker_w = cnn.layer{in}{3}(2);
         kernel = ones(ker_h,ker_w)/ker_h/ker_w;

         tmp = convn(cnn.a{in-1},kernel,'valid');
         cnn.a{in} = tmp(1:ker_h:end,1:ker_w:end,:,:);

     case 'flat'
        [height,width,mini_size,kernel_num] = size(cnn.a{in-1});
        for ik = 1:mini_size
            cnn.a{in}(:,ik) = reshape(cnn.a{in-1}(:,:,ik,:),[height*width*kernel_num,1]);
        end
     case 'full'
         cnn.z{in}= bsxfun(@plus,cnn.weights{in}*cnn.a{in-1},cnn.biases{in});
         cnn.a{in} = sigmoid(cnn.z{in});
     case 'output'
         cnn.z{in}= bsxfun(@plus,cnn.weights{in}*cnn.a{in-1},cnn.biases{in});
         cnn.a{in} = softmax(cnn.z{in});
    end
    end
end

下面是反向计算过程(伪代码),假设第 n 层为

1、卷积层:

delta{n} = upsample(delta{n+1}).*relu_prime(z{n})
nabla_w{n} = conv2(delta{n},rot90(a{n-1},2),'valid')/mini_batch_size
nabla_b{n} = mean(delta{n})

2、池化层

delta{n} = reshape(delta{n+1}) 

3、展铺层

delta{n} = weights{n+1}'*delta{n+1}

4、全连接层

delta{n} = weights{n+1}'*delta{n+1}.*sigmoid_prime(a{n})
nabla_w{n} = delta{n}*a{n-1}'/mini_batch_size
nabla_b{n} = mean(delta{n})

5、输出层

delta{n} = a{n}-y 
nabla_w{n} = delta{n}*a{n-1}'/mini_batch_size
nabla_b{n} = mean(delta{n})

下面是反向传播和模型更新部分的 MATLAB 代码

function cnn = cnn_backpropagation(cnn,y)
%CNN_BP CNN backpropagation

num = numel(cnn.layer);

for in = num:-1:2

switch cnn.layer{in}{1}
    case 'conv'

        ker_h = cnn.layer{in+1}{3}(1);
        ker_w = cnn.layer{in+1}{3}(2);
        kernel = ones(ker_h,ker_w)/ker_h/ker_w;
        [~,~,mini_size,kernel_num] = size(cnn.delta{in+1});
        cnn.nabla_w{in}(:) = 0;
        cnn.nabla_b{in}(:) = 0;
        for ik = 1:kernel_num
            for im = 1:mini_size
                cnn.delta{in}(:,:,im,ik) = kron(cnn.delta{in+1}(:,:,im,ik),kernel).*relu_prime(cnn.z{in}(:,:,im,ik));
                cnn.nabla_w{in}(:,:,ik) = cnn.nabla_w{in}(:,:,ik) +...
                    conv2(rot90(cnn.a{in-1}(:,:,im),2),cnn.delta{in}(:,:,im,ik),'valid');
                cnn.nabla_b{in}(ik) = cnn.nabla_b{in}(ik) + mean(mean(cnn.delta{in}(:,:,im,ik)));
            end
            cnn.nabla_w{in}(:,:,ik) = cnn.nabla_w{in}(:,:,ik)/mini_size;
            cnn.nabla_b{in}(ik) = cnn.nabla_b{in}(ik)/mini_size;
        end
    case 'pool'
        [height,width,mini_size,kernel_num] = size(cnn.a{in});
        for ik = 1:mini_size
            cnn.delta{in}(:,:,ik,:) = reshape(cnn.delta{in+1}(:,ik),[height,width,kernel_num]);
        end
    case 'flat'
        cnn.delta{in} = cnn.weights{in+1}'*cnn.delta{in+1};
    case 'full'
        cnn.delta{in}= cnn.weights{in+1}'*cnn.delta{in+1}.*sigmoid_prime(cnn.z{in});
        cnn.nabla_w{in} = cnn.delta{in}*(cnn.a{in-1})'/cnn.mini_size;
        cnn.nabla_b{in} = mean(cnn.delta{in},2);
    case 'output'
        cnn.delta{in}= (cnn.a{in} - y);
        cnn.nabla_w{in} = cnn.delta{in}*(cnn.a{in-1})'/cnn.mini_size;
        cnn.nabla_b{in} = mean(cnn.delta{in},2);
    otherwise

end

end

eta = cnn.eta;
lambda = cnn.lambda;
ntrain = cnn.ntrain;
% update models
for in = 1:num
    cnn.weights{in} = (1-eta*lambda/ntrain)*cnn.weights{in} - eta*cnn.nabla_w{in};
    cnn.biases{in} = (1-eta*lambda/ntrain)*cnn.biases{in} - eta*cnn.nabla_b{in};
end

end

下面是主程序部分

cnn = cnn_initialize(cnn);
max_iter = 50000;
for in = 1:max_iter
    pos = randi(ntrain-mini_batch_size);
    x = training_data(:,:,pos+1:pos+mini_batch_size);
    y = training_data_label(:,pos+1:pos+mini_batch_size);
    cnn = cnn_feedforward(cnn,x);
    cnn = cnn_backpropagation(cnn,y);
    if mod(in,100) == 0
        disp(in);
    end
    if mod(in,5000) == 0
        disp(['validtion accuracy: ',num2str(...
        cnn_evaluate(cnn,validation_data,validation_data_label)*100), '%']);
    end
end

运行结果为

这里写图片描述

迭代次数为50000万次,mini_batch_size = 100,如果按照无放回的随机梯度计算,迭代次数为100个epoch。在校验数据(validation_data)上的识别率最高为 99.02%, 在测试数据(test_data)上的识别率为 99.13%。CNN的效率比较低,单线程迭代50000次,共耗时3个多小时。-_-||。

本节代码可在这里下载到(没有积分的同学可私信我)。

猜你喜欢

转载自blog.csdn.net/hoho1151191150/article/details/79714691