Hession矩阵

1. 标量对向量求导:

结果是向量

事实上这就是所谓的Gradient,即对于一般标量函数 f(x), 其中向量为 x=(x1,...,xn),导数为:

                                                      \small \frac{\partial f}{\partial x}=\left ( \frac{\partial f}{\partial x_{1}} ,\cdots \frac{\partial f}{\partial x_{n}}\right )

也记为:\small \triangledown f

2. 向量对向量求导:

结果是矩阵

一阶导:

这个当然也是gradient,当然这准确的说应该叫matrix gradient. 即对于向量值函数 f(x), 其中 x=(x1,...,xn) , f=(f1,...,fm)

, 导数为:

                                        \small \frac{\partial f}{\partial x}=\frac{\partial f^{T}}{\partial x}= \left [ \frac{\partial f_{1}}{\partial x},\cdots \frac{\partial f_{m}}{\partial x} \right ]= \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots &\frac{\partial f_{m}}{\partial x_{1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{1}}{\partial x_{n}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{bmatrix}

这个矩阵也叫做 Jacobian 矩阵

二阶导:

二阶导数就是Hessian矩阵,形式如下:

                                        \small H\left ( f \right )=\begin{bmatrix} \frac{\partial ^{2}f}{\partial x_{1}^{2}} & \frac{\partial ^{2}f}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial ^{2}f}{\partial x_{1}\partial x_{n}} \\ \frac{\partial ^{2}f}{\partial x_{2}\partial x_{1}} & \frac{\partial ^{2}f}{\partial x_{2}^{2}} &\cdots &\frac{\partial ^{2}f}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial ^{2}f}{\partial x_{n}\partial x_{1}} & \frac{\partial ^{2}f}{\partial x_{n}\partial x_{2}} & \cdots & \frac{\partial ^{2}f}{\partial x_{n}^{2}} \end{bmatrix}

或者可以用更抽象的定义:

                                                         \small H_{ij}= \frac{\partial ^{2}l}{\partial\Theta _{i}\partial \Theta _{j} }

转自:https://blog.csdn.net/u013398398/article/details/78154710?utm_source=blogxgwz6

猜你喜欢

转载自blog.csdn.net/li528405176/article/details/83305664