arm linux vector_swi分析

linux 4.9 aarch32

如下图中断、异常和系统调用的flow,中断一般是异步的硬件请求,异常通常是应用程序的错误触发,系统调用是应用程序对内核的功能请求

发生swi后进入系统中断向量然后执行vector_swi,源代码分析如下(CONFIG_AEABI):

/*=============================================================================
 * SWI handler
 *-----------------------------------------------------------------------------
 */
/*只保留一部分代码*/
	.align	5
ENTRY(vector_swi)

	sub	sp, sp, #PT_REGS_SIZE   
	stmia	sp, {r0 - r12}			@ Calling r0 - r12 
 ARM(	add	r8, sp, #S_PC		) 
 ARM(	stmdb	r8, {sp, lr}^		)	@ Calling sp, lr
 THUMB(	mov	r8, sp			)
 THUMB(	store_user_sp_lr r8, r10, S_SP	)	@ calling sp, lr
	mrs	r8, spsr			@ called from non-FIQ mode, so ok.
	str	lr, [sp, #S_PC]			@ Save calling PC
	str	r8, [sp, #S_PSR]		@ Save CPSR
	str	r0, [sp, #S_OLD_R0]		@ Save OLD_R0

	zero_fp
	alignment_trap r10, ip, __cr_alignment  /*对齐检查*/
	enable_irq /*使能中断*/
	ct_user_exit
	get_thread_info tsk  /*进程的内核栈与thread_info放在相邻的两页*/

	/*
	 * Get the system call number.
	 */
	uaccess_disable tbl

	adr	tbl, sys_call_table		@ load syscall table pointer

local_restart:
	ldr	r10, [tsk, #TI_FLAGS]		@ check for syscall tracing
	stmdb	sp!, {r4, r5}			@ push fifth and sixth args

	tst	r10, #_TIF_SYSCALL_WORK		@ are we tracing syscalls?
	bne	__sys_trace

	cmp	scno, #NR_syscalls		@ check upper syscall limit
	badr	lr, ret_fast_syscall		@ return address /*手动
 设置sys_*返回到ret_fast_syscall */
	ldrcc	pc, [tbl, scno, lsl #2]		@ call sys_* routine
/*Pure EABI user space always put syscall number into scno (r7). table是4字节对齐所以要用lsl把scno左移两位作table偏移,跳到对应的syscall 对应表项*/

ENDPROC(vector_swi)


执行sys_*函数后返回到ret_fast_syscall函数


/*
 * This is the fast syscall return path.  We do as little as possible here,
 * such as avoiding writing r0 to the stack.  We only use this path if we
 * have tracing and context tracking disabled - the overheads from those
 * features make this path too inefficient.
 */
ret_fast_syscall:
 UNWIND(.fnstart	)
 UNWIND(.cantunwind	)
	disable_irq_notrace			@ disable interrupts
	ldr	r1, [tsk, #TI_FLAGS]		@ re-check for syscall tracing
	tst	r1, #_TIF_SYSCALL_WORK | _TIF_WORK_MASK
	bne	fast_work_pending /*检查是否有事情要做,比如signal处理 schedule处理等*/

	/* perform architecture specific actions before user return */
	arch_ret_to_user r1, lr  /*arch 相关返回用户空间要做的事*/

	restore_user_regs fast = 1, offset = S_OFF /*恢复用户空间现场,执行MOVS pc, lr时,CPSR会被SPSR覆盖,这条命令就cpu就恢复了user模式*/
 UNWIND(.fnend		)
ENDPROC(ret_fast_syscall)

	/* Ok, we need to do extra processing, enter the slow path. */
fast_work_pending:
	str	r0, [sp, #S_R0+S_OFF]!		@ returned r0
	/* fall through to work_pending */


	tst	r1, #_TIF_SYSCALL_WORK
	bne	__sys_trace_return_nosave
slow_work_pending:
	mov	r0, sp				@ 'regs'
	mov	r2, why				@ 'syscall'
	bl	do_work_pending
	cmp	r0, #0
	beq	no_work_pending
	movlt	scno, #(__NR_restart_syscall - __NR_SYSCALL_BASE)
	ldmia	sp, {r0 - r6}			@ have to reload r0 - r6
	b	local_restart			@ ... and off we go
ENDPROC(ret_fast_syscall)

system call 返回用户空间要做的事情_TIF_SYSCALL_WORK | _TIF_WORK_MASK 定义在thread_info.h中

/*
 * thread information flags:
 *  TIF_USEDFPU		- FPU was used by this task this quantum (SMP)
 *  TIF_POLLING_NRFLAG	- true if poll_idle() is polling TIF_NEED_RESCHED
 */
#define TIF_SIGPENDING		0	/* signal pending */
#define TIF_NEED_RESCHED	1	/* rescheduling necessary */
#define TIF_NOTIFY_RESUME	2	/* callback before returning to user */
#define TIF_UPROBE		3	/* breakpointed or singlestepping */
#define TIF_SYSCALL_TRACE	4	/* syscall trace active */
#define TIF_SYSCALL_AUDIT	5	/* syscall auditing active */
#define TIF_SYSCALL_TRACEPOINT	6	/* syscall tracepoint instrumentation */
#define TIF_SECCOMP		7	/* seccomp syscall filtering active */

#define TIF_NOHZ		12	/* in adaptive nohz mode */
#define TIF_USING_IWMMXT	17
#define TIF_MEMDIE		18	/* is terminating due to OOM killer */
#define TIF_RESTORE_SIGMASK	20

#define _TIF_SIGPENDING		(1 << TIF_SIGPENDING)
#define _TIF_NEED_RESCHED	(1 << TIF_NEED_RESCHED)
#define _TIF_NOTIFY_RESUME	(1 << TIF_NOTIFY_RESUME)
#define _TIF_UPROBE		(1 << TIF_UPROBE)
#define _TIF_SYSCALL_TRACE	(1 << TIF_SYSCALL_TRACE)
#define _TIF_SYSCALL_AUDIT	(1 << TIF_SYSCALL_AUDIT)
#define _TIF_SYSCALL_TRACEPOINT	(1 << TIF_SYSCALL_TRACEPOINT)
#define _TIF_SECCOMP		(1 << TIF_SECCOMP)
#define _TIF_USING_IWMMXT	(1 << TIF_USING_IWMMXT)

/* Checks for any syscall work in entry-common.S */
#define _TIF_SYSCALL_WORK (_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT | \
			   _TIF_SYSCALL_TRACEPOINT | _TIF_SECCOMP)

/*
 * Change these and you break ASM code in entry-common.S
 */
#define _TIF_WORK_MASK		(_TIF_NEED_RESCHED | _TIF_SIGPENDING | \
				 _TIF_NOTIFY_RESUME | _TIF_UPROBE)

以signal处理为例

do_work_pending(struct pt_regs *regs, unsigned int thread_flags, int syscall)
{
	/*
	 * The assembly code enters us with IRQs off, but it hasn't
	 * informed the tracing code of that for efficiency reasons.
	 * Update the trace code with the current status.
	 */
	trace_hardirqs_off();
	do {
		if (likely(thread_flags & _TIF_NEED_RESCHED)) {
			schedule(); /*schedule 当前进程出去*/
		} else {
			if (unlikely(!user_mode(regs)))
				return 0;
			local_irq_enable();
			if (thread_flags & _TIF_SIGPENDING) {
				int restart = do_signal(regs, syscall);/*处理当前进程挂起的信号*/
				if (unlikely(restart)) {
					/*
					 * Restart without handlers.
					 * Deal with it without leaving
					 * the kernel space.
					 */
					return restart;
				}
				syscall = 0;
			} else if (thread_flags & _TIF_UPROBE) {
				uprobe_notify_resume(regs);
			} else {
				clear_thread_flag(TIF_NOTIFY_RESUME);
				tracehook_notify_resume(regs);
			}
		}
		local_irq_disable();
		thread_flags = current_thread_info()->flags;
	} while (thread_flags & _TIF_WORK_MASK); /*事情做完才会继续返回用户空间*/
	return 0;
}

猜你喜欢

转载自blog.csdn.net/shenhuxi_yu/article/details/81837090