lgh ethercat master控制台达驱动器实现插补周期模式驱动电机主程序

/*****************************************************************************

 *
 *  $Id$
 *
 *  Copyright (C) 2007-2009 Florian Pose, Ingenieurgemeinschaft IgH
 *
 *  This file is part of the IgH EtherCAT Master.
 *
 *  The IgH EtherCAT Master is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License version 2, as
 *  published by the Free Software Foundation.
 *
 *  The IgH EtherCAT Master is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
 *  Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with the IgH EtherCAT Master; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 *  ---
 *
 *  The license mentioned above concerns the source code only. Using the
 *  EtherCAT technology and brand is only permitted in compliance with the
 *  industrial property and similar rights of Beckhoff Automation GmbH.
 *
 ****************************************************************************/
 
#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <time.h> /* clock_gettime() */
#include <sys/mman.h> /* mlockall() */
#include <malloc.h>
/****************************************************************************/
 
#include "ecrt.h"
 
/****************************************************************************/
 
/** Task period in ns. */
#define PERIOD_NS   2000000
#define CLOCK_TO_USE CLOCK_REALTIME
//#define MEASURE_TIMING
 
/****************************************************************************/
 
//#define NSEC_PER_SEC (1000000000L)
//#define PERIOD_NS (NSEC_PER_SEC / FREQUENCY)
 
 
/* Constants */
#define NSEC_PER_SEC (2000000000)
#define FREQUENCY (NSEC_PER_SEC / PERIOD_NS)
 
#define DIFF_NS(A, B) (((B).tv_sec - (A).tv_sec) * NSEC_PER_SEC/2 + \
    (B).tv_nsec - (A).tv_nsec)
 
#define TIMESPEC2NS(T) ((uint64_t) (T).tv_sec * NSEC_PER_SEC/2 + (T).tv_nsec)
 
/****************************************************************************/
 
#define MAX_SAFE_STACK (8 * 1024) /* The maximum stack size which is
                                     guranteed safe to access without
                                     faulting */
 
 
 
/****************************************************************************/
 
// EtherCAT
static ec_master_t *master = NULL;
static ec_master_state_t master_state = {};
 
static ec_domain_t *domain1 = NULL;
static ec_domain_state_t domain1_state = {};
 
static ec_slave_config_t *sc_ana_in = NULL;
static ec_slave_config_state_t sc_ana_in_state = {};
 
/****************************************************************************/
 
// process data
static uint8_t *domain1_pd = NULL;
 
#define BusCouplerPos  0, 0
 
 
#define Beckhoff_EK1100 477, 271601776
 
 
// offsets for PDO entries
static unsigned int off_ana_out_contrl;
static unsigned int off_ana_out_targetpos;
static unsigned int off_ana_out_v;
static unsigned int off_dig_out_ref_v;
static unsigned int off_dig_out_diffv;
static unsigned int off_dig_in_status;
static unsigned int off_dig_out_actual_pos;
 
const static ec_pdo_entry_reg_t domain1_regs[] = {
	/* alias:0 pos:0 venderid: 0x2 pId:0x044c252, index:0x3101 subindex offset:Pointer to a variable to store the PDO entry's */
    {BusCouplerPos,  Beckhoff_EK1100, 0x6040, 0, &off_ana_out_contrl},
    {BusCouplerPos,  Beckhoff_EK1100, 0x607a, 0, &off_ana_out_targetpos},
    {BusCouplerPos,  Beckhoff_EK1100, 0x60ff, 0, &off_ana_out_v},
    {BusCouplerPos,  Beckhoff_EK1100, 0x60c1, 1, &off_dig_out_ref_v},
    {BusCouplerPos,  Beckhoff_EK1100, 0x60c1, 2, &off_dig_out_diffv},
    {BusCouplerPos,  Beckhoff_EK1100, 0x6041, 0, &off_dig_in_status},
    {BusCouplerPos,  Beckhoff_EK1100, 0x6064, 0, &off_dig_out_actual_pos},
    {}
};
 
static unsigned int counter = 0;
static unsigned int blink = 0;
 
/*****************************************************************************/
 
// Analog in --------------------------
 
static ec_pdo_entry_info_t ek1000_pdo_entries[] = {
	   /* index      subindex len*/
    {0x6040, 0,  16}, // channel 1 status
    {0x607a, 0,  32}, // channel 1 value
    {0x60ff, 0,  32}, // channel 2 status
    {0x60c1, 1, 32}, // channel 2 value
    {0x60c1, 2, 16}, // channel 1 value (alt.)
    {0x6041, 0, 16}, // channel 1 value (alt.)
    {0x6064, 0, 32}, // channel 1 value (alt.)
};
 
 
static ec_pdo_info_t ek1000_pdos[] = {
	 /* index          n_entries *entries */
    {0x1601, 5, ek1000_pdo_entries},
    {0x1A01, 2, ek1000_pdo_entries + 5}
};
 
static ec_sync_info_t ek1000_syncs[] = {
	  /*index      direction         n_pdos */
    {2, EC_DIR_OUTPUT, 1, ek1000_pdos},
    {3, EC_DIR_INPUT,1, ek1000_pdos + 1},
    {0xff}
};
 
 
 
static unsigned int sync_ref_counter = 0;
const struct timespec cycletime = {0, PERIOD_NS};
 
 
/*****************************************************************************/
 
struct timespec timespec_add(struct timespec time1, struct timespec time2)
{
    struct timespec result;
 
    if ((time1.tv_nsec + time2.tv_nsec) >= NSEC_PER_SEC/2) {
        result.tv_sec = time1.tv_sec + time2.tv_sec + 1;
        result.tv_nsec = time1.tv_nsec + time2.tv_nsec - NSEC_PER_SEC/2;
    } else {
        result.tv_sec = time1.tv_sec + time2.tv_sec;
        result.tv_nsec = time1.tv_nsec + time2.tv_nsec;
    }
 
    return result;
}
 
/*****************************************************************************/
/*****************************************************************************/
 
void check_domain1_state(void)
{
    ec_domain_state_t ds;
 
    ecrt_domain_state(domain1, &ds);
 
    if (ds.working_counter != domain1_state.working_counter) {
        printf("Domain1: WC %u.\n", ds.working_counter);
    }
    if (ds.wc_state != domain1_state.wc_state) {
        printf("Domain1: State %u.\n", ds.wc_state);
    }
 
    domain1_state = ds;
}
 
/*****************************************************************************/
 
void check_master_state(void)
{
    ec_master_state_t ms;
 
    ecrt_master_state(master, &ms);
 
    if (ms.slaves_responding != master_state.slaves_responding) {
        printf("%u slave(s).\n", ms.slaves_responding);
    }
    if (ms.al_states != master_state.al_states) {
        printf("AL states: 0x%02X.\n", ms.al_states);
    }
    if (ms.link_up != master_state.link_up) {
        printf("Link is %s.\n", ms.link_up ? "up" : "down");
    }
 
    master_state = ms;
}
 
/*****************************************************************************/
 
void check_slave_config_states(void)
{
    ec_slave_config_state_t s;
    //s.al_state = 8;
    //s.online =1;
    //s.operational = 0;
 
    ecrt_slave_config_state(sc_ana_in, &s);
 
    if (s.al_state != sc_ana_in_state.al_state) {
        printf("AnaIn: State 0x%02X.\n", s.al_state);
    }
    if (s.online != sc_ana_in_state.online) {
        printf("AnaIn: %s.\n", s.online ? "online" : "offline");
    }
    if (s.operational != sc_ana_in_state.operational) {
        printf("AnaIn: %soperational.\n", s.operational ? "" : "Not ");
    }
 
    sc_ana_in_state = s;
}
 
/*****************************************************************************/
/****************************************************************************/
 
void cyclic_task()
{
    struct timespec wakeupTime, time;
#ifdef MEASURE_TIMING
    struct timespec startTime, endTime, lastStartTime = {};
    uint32_t period_ns = 0, exec_ns = 0, latency_ns = 0,
             latency_min_ns = 0, latency_max_ns = 0,
             period_min_ns = 0, period_max_ns = 0,
             exec_min_ns = 0, exec_max_ns = 0;
#endif
 
 
    // get current time
    clock_gettime(CLOCK_TO_USE, &wakeupTime);
 
    while(1) {
        wakeupTime = timespec_add(wakeupTime, cycletime);
        clock_nanosleep(CLOCK_TO_USE, TIMER_ABSTIME, &wakeupTime, NULL);
 
#ifdef MEASURE_TIMING
        clock_gettime(CLOCK_TO_USE, &startTime);
        latency_ns = DIFF_NS(wakeupTime, startTime);
        period_ns = DIFF_NS(lastStartTime, startTime);
        exec_ns = DIFF_NS(lastStartTime, endTime);
        lastStartTime = startTime;
 
        if (latency_ns > latency_max_ns) {
            latency_max_ns = latency_ns;
        }
        if (latency_ns < latency_min_ns) {
            latency_min_ns = latency_ns;
        }
        if (period_ns > period_max_ns) {
            period_max_ns = period_ns;
        }
        if (period_ns < period_min_ns) {
            period_min_ns = period_ns;
        }
        if (exec_ns > exec_max_ns) {
            exec_max_ns = exec_ns;
        }
        if (exec_ns < exec_min_ns) {
            exec_min_ns = exec_ns;
        }
#endif
 
        // receive process data
        ecrt_master_receive(master);
        ecrt_domain_process(domain1);
 
        // check process data state (optional)
        check_domain1_state();
 
        if (counter) {
            counter--;
        } else { // do this at 1 Hz
            counter = FREQUENCY;
 
            // check for master state (optional)
            check_master_state();
 
#ifdef MEASURE_TIMING
            // output timing stats
            printf("period     %10u ... %10u\n",
                    period_min_ns, period_max_ns);
            printf("exec       %10u ... %10u\n",
                    exec_min_ns, exec_max_ns);
            printf("latency    %10u ... %10u\n",
                    latency_min_ns, latency_max_ns);
            period_max_ns = 0;
            period_min_ns = 0xffffffff;
            exec_max_ns = 0;
            exec_min_ns = 0xffffffff;
            latency_max_ns = 0;
            latency_min_ns = 0xffffffff;
#endif
 
            // calculate new process data
            blink = !blink;
        }
 
        // write process data
#if 0
        EC_READ_U16(domain1_pd + off_ana_out_contrl);
        EC_READ_S32(domain1_pd + off_ana_out_targetpos);
        EC_READ_S32(domain1_pd + off_ana_out_v);
        EC_READ_S32(domain1_pd + off_dig_out_ref_v);
        EC_READ_U16(domain1_pd + off_dig_out_diffv);
#endif
 
#if 0
        EC_WRITE_U16(domain1_pd + off_ana_out_contrl, 6);
        EC_WRITE_S32(domain1_pd + off_ana_out_targetpos,5555);
        EC_WRITE_S32(domain1_pd + off_ana_out_v,400);
        EC_WRITE_S32(domain1_pd + off_dig_out_ref_v,100);
        EC_WRITE_U16(domain1_pd + off_dig_out_diffv, 0);
#endif
 
        EC_READ_U16(domain1_pd + off_dig_in_status);
        EC_READ_S32(domain1_pd + off_dig_out_actual_pos);
        printf("actual position %d:\n", *(int *)(domain1_pd + off_dig_out_actual_pos));
       // EC_WRITE_S32(domain1_pd + off_ana_out_targetpos, 100 + *(int *)(domain1_pd + off_dig_out_actual_pos));
#if 0  //8 mode
        EC_WRITE_U16(domain1_pd + off_ana_out_contrl, 15);
        //EC_WRITE_S32(domain1_pd + off_ana_out_targetpos,5555);
                EC_WRITE_S32(domain1_pd + off_ana_out_targetpos, 100 + *(int *)(domain1_pd + off_dig_out_actual_pos));
        EC_WRITE_S32(domain1_pd + off_ana_out_v,400);
 #endif
 
         EC_WRITE_U16(domain1_pd + off_ana_out_contrl, 15);
         EC_WRITE_S32(domain1_pd + off_dig_out_ref_v,100 + *(int *)(domain1_pd + off_dig_out_actual_pos));
 
         EC_WRITE_S32(domain1_pd + off_ana_out_v,400);
        // write application time to master
        clock_gettime(CLOCK_TO_USE, &time);
        ecrt_master_application_time(master, TIMESPEC2NS(time));
 
        if (sync_ref_counter) {
            sync_ref_counter--;
        } else {
            sync_ref_counter = 1; // sync every cycle
            ecrt_master_sync_reference_clock(master);
        }
        ecrt_master_sync_slave_clocks(master);
 
        // send process data
        ecrt_domain_queue(domain1);
        ecrt_master_send(master);
 
#ifdef MEASURE_TIMING
        clock_gettime(CLOCK_TO_USE, &endTime);
#endif
    }
}
#if 0
 
void cyclic_task_user()
{
    // receive process data
    ecrt_master_receive(master);
    ecrt_domain_process(domain1);
 
    // check process data state
    check_domain1_state();
 
    if (counter) {
        counter--;
    } else { // do this at 1 Hz
        counter = FREQUENCY;
 
        // calculate new process data
        blink = !blink;
 
       // check for master state (optional)
        check_master_state();
 
        // check for slave configuration state(s) (optional)
        check_slave_config_states();
    }
 
#if 1
    // read process data
 
            EC_WRITE_U16(domain1_pd + off_ana_out_contrl, 6);
            EC_WRITE_S32(domain1_pd + off_ana_out_targetpos,5555);
            EC_WRITE_S32(domain1_pd + off_ana_out_v,400);
            EC_WRITE_S32(domain1_pd + off_dig_out_ref_v,100);
            EC_WRITE_U16(domain1_pd + off_dig_out_diffv, 0);
            EC_READ_U16(domain1_pd + off_dig_in_status);
            EC_READ_S32(domain1_pd + off_dig_out_actual_pos);
            //printf();
#endif
 
#if 1
    // write process data
   // EC_WRITE_S32(domain1_pd + off_ana_out_v, 400);
#endif
 
    // send process data
    ecrt_domain_queue(domain1);
    ecrt_master_send(master);
}
 
#endif
/****************************************************************************/
 
void stack_prefault(void)
{
    unsigned char dummy[MAX_SAFE_STACK];
 
    memset(dummy, 0, MAX_SAFE_STACK);
}
 
/****************************************************************************/
 
int main1(int argc, char **argv)
{
    ec_slave_config_t *sc;
    struct timespec wakeup_time;
    int ret = 0;
 
    /* Lock memory */
 
    if (mlockall(MCL_CURRENT | MCL_FUTURE) == -1) {
        fprintf(stderr, "Warning: Failed to lock memory: %s\n",
                strerror(errno));
    }
 
    stack_prefault();
 
    master = ecrt_request_master(0);
    if (!master) {
        return -1;
    }
 
    domain1 = ecrt_master_create_domain(master);
    if (!domain1) {
        return -1;
    }
 
    // Create configuration for bus coupler
 
    sc = ecrt_master_slave_config(master, BusCouplerPos, Beckhoff_EK1100);
    if (!sc) {
        return -1;
    }
 
 
 
    if (ecrt_slave_config_pdos(sc, EC_END, ek1000_syncs)) {
        fprintf(stderr, "Failed to configure PDOs.\n");
        return -1;
    }
 
      sc_ana_in = sc;
 
    if (ecrt_domain_reg_pdo_entry_list(domain1, domain1_regs)) {
        fprintf(stderr, "PDO entry registration failed!\n");
        return -1;
    }
 
    // configure SYNC signals for this slave
   ecrt_slave_config_dc(sc, 0x0700, PERIOD_NS, 4400000, 0, 0);
 
    printf("Activating master...\n");
    if (ecrt_master_activate(master)) {
        return -1;
    }
 
    if (!(domain1_pd = ecrt_domain_data(domain1))) {
        return -1;
    }
 
    pid_t pid = getpid();
       if (setpriority(PRIO_PROCESS, pid, -19))
           fprintf(stderr, "Warning: Failed to set priority: %s\n",
                   strerror(errno));
 
       printf("Starting cyclic function.\n");
       cyclic_task();
 
   #if 0  //user
    /* Set priority */
 
    pid_t pid = getpid();
    if (setpriority(PRIO_PROCESS, pid, -19)) {
        fprintf(stderr, "Warning: Failed to set priority: %s\n",
                strerror(errno));
    }
 
    /* Lock memory */
 
    if (mlockall(MCL_CURRENT | MCL_FUTURE) == -1) {
        fprintf(stderr, "Warning: Failed to lock memory: %s\n",
                strerror(errno));
    }
 
    stack_prefault();
 
    printf("Starting RT task with dt=%u ns.\n", PERIOD_NS);
 
    clock_gettime(CLOCK_MONOTONIC, &wakeup_time);
    wakeup_time.tv_sec += 1; /* start in future */
    wakeup_time.tv_nsec = 0;
 
    while (1) {
        ret = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
                &wakeup_time, NULL);
        if (ret) {
            fprintf(stderr, "clock_nanosleep(): %s\n", strerror(ret));
            break;
        }
 
        cyclic_task();
 
        wakeup_time.tv_nsec += PERIOD_NS/2;
        while (wakeup_time.tv_nsec >= NSEC_PER_SEC/2) {
            wakeup_time.tv_nsec -= NSEC_PER_SEC/2;
            wakeup_time.tv_sec++;
        }
    }
#endif
    return ret;
}
 
/****************************************************************************/

猜你喜欢

转载自www.cnblogs.com/zhaoyongliang/p/9902150.html