KNN算法原理 K Nearest Neighbour

K-临近算法原理

简单地说,K-近邻算法采用测量不同特征值之间的距离方法进行分类。
存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据 与所属分类的对应关系。
输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的 特征进行比较,常用的是计算欧几里得距离,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。
一般来说,我们 只选择样本数据集中前K个最相似的数据,这就是K-近邻算法中K的出处,通常K是不大于20的整数。 最后 ,选择K个最相似数据中出现次数最多的分类,作为新数据的分类。

实例:选取鸢尾花数据进行分类

# load_iris是机器学习库提供给我们研究算法的数据
from sklearn.datasets import load_iris
iris = load_iris()
data = iris.data # 150个花的特征数据
target = iris.target # 每个数据对应的分类结果
target_names = iris.target_names # 每个结果对应的名字
feature_names = iris.feature_names # 所有的特征

features = DataFrame(data=data,columns = feature_names)

# 获取训练集和测试集,为了能够在图上显示,只选择两个特征进行

features.iloc[:,0].std()
#0.828066127977863

features.iloc[:,2].std()
#1.7652982332594662

features.iloc[:,1].std()
#0.4358662849366982

features.iloc[:,3].std()
#0.7622376689603465

# 选区标准差较大的两个作为训练数据
# samples(训练集、测试集)
X_train = features.iloc[:130,2:4]
y_train = target[:130]

# 测试集(验证训练模型的准确度)
X_test = features.iloc[130:,2:4]
y_test = target[130:]

# 绘制图形
import matplotlib.pyplot as plt
%matplotlib inline
samples = features.iloc[:,2:4]

# 展示真实数据的分类情况
plt.scatter(samples.iloc[:,0],samples.iloc[:,1],c=target)

鸢尾花

# 定义KNN分类器,训练数据,生成预测结果。
knnclf = KNeighborsClassifier(n_neighbors=5)
knnclf.fit(X_train,y_train)
y_ = knnclf.predict(X_test)

# 获取所有预测点(满屏幕的点),将满屏幕的点最为预测数据
xmin,xmax = samples.iloc[:,0].min(),samples.iloc[:,0].max()
ymin,ymax = samples.iloc[:,1].min(),samples.iloc[:,1].max()

x = np.linspace(xmin,xmax,100)
y = np.linspace(ymin,ymax,100)

xx,yy = np.meshgrid(x,y)

X_test = np.c_[xx.ravel(),yy.ravel()]
y_ = knnclf.predict(X_test)
# 显示数据
from matplotlib.colors import ListedColormap

cmap = ListedColormap(['#aa00ff','#00aaff','#ffaa00'])

# 展示预测数据的分类情况
plt.scatter(X_test[:,0],X_test[:,1],c=y_,cmap=cmap)
# 展示真实数据的分类情况
plt.scatter(samples.iloc[:,0],samples.iloc[:,1],c=target)

在这里插入图片描述

KNN算法还可用于回归分析

第一步:生成模型,并训练数据
第二步:使用模型,预测数据
大概思路,使用周围几个点(根据n_neighbors的取值)坐标的平均值作为线上的点

小结

  • 优点:精度高、对异常值不敏感、无数据输入假定。
  • 缺点:时间复杂度高、空间复杂度高。
  • 适用数据范围:数值型和标称型。

猜你喜欢

转载自blog.csdn.net/m0_37156322/article/details/84431608