kaggle—first play—Titanic(特征工程)

之前使用逻辑回归算法得到的生还预测kaggle打分是0.75119分,emmm,可以说是比较差的一个分数了,下面进行调整。

-----------------------------------------------------------------------------------------------

1、判断拟合状态

由于过拟合和欠拟合两种情况下对于数据集的处理不同,所以首先需要判断现有模型是过拟合还是欠拟合。

百度百科欠拟合

百度百科过拟合

我们可以通过绘制学习曲线(learning curve)来进行判断(样本数为横坐标,准确率为纵坐标)

learning curve 官方文档    learning curve 官方示例代码

首先定义学习曲线的绘制函数:

from sklearn.learning_curve import learning_curve
from sklearn import cross_validation
#定义学习曲线绘制
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, 
                        train_sizes=np.linspace(.05, 1., 20), verbose=0, plot=True):
    plt.figure()
    plt.title(title)
    if ylim is not None:
        plt.ylim(*ylim)
    plt.xlabel("Training examples")
    plt.ylabel("Score")
    train_sizes, train_scores, test_scores = learning_curve(
        estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
    train_scores_mean = np.mean(train_scores, axis=1)
    train_scores_std = np.std(train_scores, axis=1)
    test_scores_mean = np.mean(test_scores, axis=1)
    test_scores_std = np.std(test_scores, axis=1)
    plt.grid()
    plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
    plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                     test_scores_mean + test_scores_std, alpha=0.1, color="g")
    plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
             label="Training score")
    plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
             label="Cross-validation score")
    plt.legend(loc="best")
    return plt

根据已有模型,设置上面函数中的参数并调用:

#具体参数
estimator = lrModel
title = 'Learning Curves (LogisticRegression)'
X, y = data_train[inputcolumns], data_train[outpucolumns]
cv = cross_validation.ShuffleSplit(891, n_iter=100, test_size=0.2, random_state=0)
#调用
plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=4)
plt.show()

得到如下的图形,属于欠拟合的状态,所以后续还需要做更多的特征工程:

2、特征工程

 考虑到对数据集的处理,可以从以下的几个方向进行更深层的考虑:

1)未使用到的姓名、船票编号列是否能够加以利用

2)Parch和Sibsp两个变量分别代表同船的兄弟/姐妹和分母/小孩的个数,求和是否能够代表同船的家族大小(人数)

3)缺失年龄的随机森林拟合欠妥,是否有更好解决方法

经过更深入的观察,先对数据做以下处理(从易到难):

1)Parch和Sibsp求和得到家族人数

#将Parch 和 SibSp 变量求和得到家族大小
data['family_size'] = data['Parch'] + data['SibSp']

2)根据Ticket 分组,得到人均票价,再根据人均票价进行离散化

#根据Ticket进行分组,得到人均票价, 再根据票价区间进行离散化
data['Fare'] = data['Fare'] / data.groupby(by=['Ticket'])['Fare'].transform('count')

data['Fare'].describe()

def fare_level(s):
    if s <= 5 : #低价票
        m = 0
    elif s>5 and s<=20:  #普通票
        m = 1
    elif s>20 and s<=40:  #一等票
        m = 2
    else:
        m = 3  #特等票
    return m

data['Fare_level'] = data['Fare'].apply(fare_level)

3)将对结果影响最大的两个因素——sex 和 pclass 进行合并,生成一个新的变量

data['Sex_Pclass'] = data.Sex + "_" + data.Pclass.map(str)
dummies_Sex_Pclass = pd.get_dummies(data['Sex_Pclass'], prefix= 'Sex_Pclass')
data = pd.concat([data, dummies_Sex_Pclass], axis=1)

4)缺失年龄填补,这里使用线性回归和随机森林的均值

age_data = data[['Age','Fare_level', 'family_size', 'Pclass','Sex_Pclass_female_1',
       'Sex_Pclass_female_2', 'Sex_Pclass_female_3', 'Sex_Pclass_male_1',
       'Sex_Pclass_male_2', 'Sex_Pclass_male_3', 'embarked_C','embarked_Q','embarked_S']]
fcolumns = ['Fare_level', 'family_size', 'Pclass', 'Sex_Pclass_female_1',
       'Sex_Pclass_female_2', 'Sex_Pclass_female_3', 'Sex_Pclass_male_1',
       'Sex_Pclass_male_2', 'Sex_Pclass_male_3', 'embarked_C','embarked_Q','embarked_S']
tcolumns = ['Age']

age_data_known = age_data[age_data.Age.notnull()]
age_data_unknown = age_data[age_data.Age.isnull()]

x = age_data_known[fcolumns]#特征变量
y = age_data_known[tcolumns]#目标变量

from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import GridSearchCV

#线性回归
lr = LinearRegression()
lr_grid_pattern = {'fit_intercept': [True], 'normalize': [True]}
lr_grid = GridSearchCV(lr, lr_grid_pattern, cv=10, n_jobs=1, verbose=1, scoring='neg_mean_squared_error')
lr_grid.fit(age_data_known[fcolumns], age_data_known[tcolumns])
print('Age feature Best LR Params:' + str(lr_grid.best_params_))
print('Age feature Best LR Score:' + str(lr_grid.best_score_))
lr = lr_grid.predict(age_data_unknown[fcolumns]).tolist()
lr = sum(lr, [])

#随机森林回归
rfr = RandomForestRegressor()
rfr_grid_pattern = {'max_depth': [3], 'max_features': [3]}
rfr_grid = GridSearchCV(rfr, rfr_grid_pattern, cv=10, n_jobs=1, verbose=1, scoring='neg_mean_squared_error')
rfr_grid.fit(age_data_known[fcolumns], age_data_known[tcolumns])
print('Age feature Best LR Params:' + str(rfr_grid.best_params_))
print('Age feature Best LR Score:' + str(rfr_grid.best_score_))
rfr = rfr_grid.predict(age_data_unknown[fcolumns]).tolist()

#取二者均值   
predictresult = pd.DataFrame()
predictresult['lr'] = lr
predictresult['rfr'] = rfr
predictresult['result'] = (predictresult['lr'] + predictresult['rfr']) / 2
data.loc[data['Age'].isnull(), 'Age'] = predictresult['result']

5)根据年龄段,进行离散化

def age_level(s):
    if s <= 14 : #儿童
        m = 0
    elif s>14 and s<=35:  #青年
        m = 1
    elif s>35 and s<=60:  #中年
        m = 2
    else:
        m = 3  #老年
    return m

data['age_level'] = data['Age'].apply(age_level)

3、单个模型拟合

还是使用逻辑回归模型,对上述处理过的数据集进行拟合

data_train = data.drop(['Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 
                        'Ticket',  'Fare', 'Cabin', 'Embarked', 'Sex_Pclass'], axis=1, inplace=False)
#data_train.columns

#再次进行单个模型拟合
from sklearn import linear_model
lrModel = linear_model.LogisticRegression(penalty='l1')

inputcolumns = ['family_size', 'Fare_level', 'Sex_Pclass_female_1',
       'Sex_Pclass_female_2', 'Sex_Pclass_female_3', 'Sex_Pclass_male_1',
       'Sex_Pclass_male_2', 'Sex_Pclass_male_3', 'embarked_C', 'embarked_Q',
       'embarked_S', 'age_level']
outpucolumns = ['Survived']

lrModel.fit(data_train[inputcolumns], data_train[outpucolumns])
lrModel.score(data_train[inputcolumns], data_train[outpucolumns])

-----------------------------------------------------------------------

对测试集做同样处理后,得到的预测结果上传kaggle,评分0.77,上升了0.02。  >_<

 后续将再进行交叉验证和模型融合的优化

猜你喜欢

转载自www.cnblogs.com/rix-yb/p/10137305.html