CTFT题目

目录

  1
  2
  3
  4
  5
  5
  7
  8
  9
  10

1.证明若 x a ( t ) x_a(t) 是有限的,式
X a ( j Ω ) = x a ( t ) e j Ω t d t X_a(j\Omega)=\int_{-\infty}^{\infty}x_a(t)e^{-j\Omega t}dt
定义的 X a ( j Ω ) X_a(j\Omega) 的绝对值绝对可积。
解:
x a ( t ) < \vert x_a(t)\vert < \infty
x a ( t ) = 1 2 π X a ( j Ω ) e j Ω t d Ω 1 2 π X a ( j Ω ) e j Ω t d Ω = 1 2 π X a ( j Ω ) d Ω < \begin{aligned} \vert x_a(t)\vert&=\vert \frac{1}{2\pi}\int_{-\infty}^{\infty}X_a(j\Omega)e^{j\Omega t}d\Omega\vert \\ &\leq \frac{1}{2\pi}\int_{-\infty}^{\infty}\vert X_a(j\Omega) \vert\vert e^{j\Omega t}\vert d\Omega\\ &=\frac{1}{2\pi}\int_{-\infty}^{\infty}\vert X_a(j\Omega)d\Omega<\infty \end{aligned}
所以
X a ( j Ω ) d Ω < \int_{-\infty}^{\infty}\vert X_a(j\Omega)d\Omega<\infty
X a ( j Ω ) X_a(j\Omega) 的绝对值绝对可积。
返回目录

2.求定义在 < t < -\infty < t < \infty 的下列连续时间函数的CTFT:
(a) y a ( t ) = s i n ( Ω a t ) y_a(t)=sin(\Omega _at)
(b) u a ( t ) = e α t u_a(t)=e^{-\alpha\vert t\vert}
(c) v a ( t ) = e j Ω 0 t v_a(t)=e^{j\Omega_0t}
(d) p a ( t ) = l = δ ( t l T ) p_a(t)=\sum_{l=-\infty}^{\infty}\delta(t-lT)
(e) g a ( t ) = e a t 2 g_a(t)=e^{-at^2}
解:
(a)
s i n ( Ω 0 t ) = 1 2 j ( e j Ω 0 t e j Ω 0 t ) sin(\Omega_0t)=\frac{1}{2j}(e^{j\Omega_0t}-e^{-j\Omega_0t})

1 C T F T 2 π δ ( Ω ) 1\xrightarrow{CTFT}2\pi \delta(\Omega)
所以
1 e j Ω 0 t C T F T 2 π δ ( Ω Ω 0 ) 1 e j Ω 0 t C T F T 2 π δ ( Ω + Ω 0 ) 1\cdot e^{j\Omega_0t}\xrightarrow{CTFT}2\pi \delta(\Omega - \Omega_0) \\ 1 \cdot e^{-j\Omega_0t}\xrightarrow{CTFT}2\pi \delta(\Omega + \Omega_0)

s i n ( Ω 0 t ) C T F T π j ( δ ( Ω + Ω 0 ) δ ( Ω Ω 0 ) ) \color{red}sin(\Omega_0t)\xrightarrow{CTFT}\pi j(\delta(\Omega+\Omega_0)-\delta(\Omega-\Omega_0))
(b)
U ( j Ω ) = e α t e j Ω t d t = 0 e α t e j Ω t d t + 0 e α t e j Ω t d t U(j\Omega)=\int_{-\infty}^{\infty}e^{-\alpha\vert t \vert}e^{-j\Omega t}dt=\int_{-\infty}^{0}e^{\alpha t }e^{-j\Omega t}dt+\int_{0}^{\infty}e^{-\alpha t }e^{-j\Omega t}dt
0 e α t d t = 1 α e α t 0 = 1 α \int_{0}^{\infty}e^{-\alpha t}dt=\frac{1}{-\alpha}e^{-\alpha t}\vert_{0}^{\infty}=\frac{1}{\alpha}

U ( j Ω ) = 0 e α t e j Ω t d t + 0 e α t e j Ω t d t = 0 e α t e j Ω t d t + 0 e α t e j Ω t d t = 1 α j Ω + 1 α + j Ω = 2 α Ω 2 + α 2 U(j\Omega)=\int_{-\infty}^{0}e^{\alpha t }e^{-j\Omega t}dt+\int_{0}^{\infty}e^{-\alpha t }e^{-j\Omega t}dt=\int_{0}^{\infty}e^{-\alpha t}e^{j\Omega t}dt + \int_{0}^{\infty}e^{-\alpha t }e^{-j\Omega t}dt \\ =\frac{1}{\alpha-j\Omega}+\frac{1}{\alpha+j\Omega}=\frac{2\alpha}{\Omega^2+\alpha^2}

e α t C T F T 2 α Ω 2 + α 2 \color{red}e^{-\alpha \vert t \vert} \xrightarrow{CTFT}\frac{2\alpha}{\Omega^2+\alpha^2}
(c)
e j Ω 0 t C T F T 2 π δ ( Ω Ω 0 ) \color{red}e^{j\Omega_0t}\xrightarrow{CTFT}2\pi\delta(\Omega-\Omega_0)
(d)
   p a ( t ) p_a(t) 是周期为 l l 的周期函数,所以可以将其进行傅里叶级数展开,其主周期的傅里叶变换为
F ( j Ω ) = C T F T [ δ ( t ) ] = 1 F(j\Omega)=CTFT[\delta(t)]=1
故其傅里叶级数的系数为
c n = 1 T F ( j Ω ) Ω = n Ω 0 = 1 T = 1 l c_n=\frac{1}{T}F(j\Omega)\vert_{\Omega=n\Omega_0}=\frac{1}{T}=\frac{1}{l}

l = δ ( t l T ) = n = 1 l e j n Ω 0 t \sum_{l=-\infty}^{\infty}\delta(t-lT)=\sum_{n=-\infty}^{\infty}\frac{1}{l}e^{jn\Omega_0 t}
其中 Ω 0 = 2 π l \Omega_0=\frac{2\pi}{l} ,将上式两边同时进行傅里叶变换
C T F T [ l = δ ( t l T ) ] = 1 l n = 2 π δ ( Ω n Ω 0 ) = Ω 0 n = δ ( Ω n Ω 0 ) CTFT[\sum_{l=-\infty}^{\infty}\delta(t-lT)]=\frac{1}{l}\sum_{n=-\infty}^{\infty}2\pi\delta(\Omega - n\Omega_0)=\Omega_0\sum_{n=-\infty}^{\infty}\delta(\Omega - n\Omega_0)

l = δ ( t l T ) C T F T Ω 0 n = δ ( Ω n Ω 0 ) ,   Ω 0 = 2 π l \color{red}\sum_{l=-\infty}^{\infty}\delta(t-lT)\xrightarrow{CTFT}\Omega_0\sum_{n=-\infty}^{\infty}\delta(\Omega - n\Omega_0),\, \Omega_0=\frac{2\pi}{l}
(e)
e a t 2 e j Ω t d t = e a ( t 2 + 2 j Ω 2 a t + ( j Ω 2 a ) 2 ) + a ( j Ω 2 a ) 2 d t = e Ω 2 4 a e a ( t + j Ω 2 a ) 2 d t \int_{-\infty}^{\infty}e^{-at^2}e^{-j\Omega t}dt=\int_{-\infty}^{\infty}e^{-a(t^2+2\frac{j\Omega}{2a}t+(\frac{j\Omega}{2a})^2)+a(\frac{j\Omega}{2a})^2}dt \\ \\ =e^{-\frac{\Omega^2}{4a}}\int_{-\infty}^{\infty}e^{-a(t+\frac{j\Omega}{2a})^2}dt
考虑一高斯分布为
1 2 π 1 2 a e a ( t + j Ω 2 a ) 2 a π e a ( t + j Ω 2 a ) 2 d t = 1 e a ( t + j Ω 2 a ) 2 d t = π a \frac{1}{\sqrt{2\pi}\frac{1}{\sqrt{2a}}}e^{-a(t+\frac{j\Omega}{2a})^2} \Rightarrow\int_{-\infty}^{\infty}\frac{\sqrt{a}}{\sqrt{\pi}}e^{-a(t+\frac{j\Omega}{2a})^2}dt = 1 \Rightarrow\int_{-\infty}^{\infty}e^{-a(t+\frac{j\Omega}{2a})^2}dt=\frac{\sqrt{\pi}}{\sqrt{a}}
所以
e a t 2 e j Ω t d t = π a e Ω 2 4 a \int_{-\infty}^{\infty}e^{-at^2}e^{-j\Omega t}dt=\sqrt{\frac{\pi}{a}}e^{-\frac{\Omega^2}{4a}}
所以
e a t 2 C T F T π a e Ω 2 4 a \color{red}e^{-at^2} \xrightarrow{CTFT}\sqrt{\frac{\pi}{a}}e^{-\frac{\Omega^2}{4a}}
返回目录

3.求定义在 < t < -\infty < t <\infty 的下列连续时间函数的CTFT:
(a) v a ( t ) = 1 v_a(t)=1
(b) μ a ( t ) = { 1 , t 0 0 , t < 0 \mu_a(t)= \begin{cases} 1, \quad t \geq 0 \\ 0, \quad t < 0 \end{cases}
(c) x a ( t ) = { 1 , t < 1 2 1 2 , t = 1 2 0 , t > 1 2 x_a(t)= \begin{cases} 1, \quad &\vert t \vert < \frac{1}{2}\\ \frac{1}{2}, \quad &\vert t \vert = \frac{1}{2} \\ 0, \quad &\vert t \vert > \frac{1}{2} \end{cases}
(d) y a ( t ) = { 1 2 t ,   t < 1 2 0 ,   t 1 2 y_a(t)= \begin{cases} 1 - 2\vert t \vert, \, &\vert t \vert < \frac{1}{2} \\ 0, \, &\vert t \vert \geq \frac{1}{2} \end{cases}
解:
(a)
由于 1 1 既不绝对可和,也不平方可和,所以不能从定义直接得到,不过可以考虑
1 = lim α 0 e α t 1=\lim\limits_{\alpha \to 0}e^{-\alpha \vert t \vert}
由于 e α t C T F T 2 α Ω 2 + α 2 e^{-\alpha \vert t \vert}\xrightarrow{CTFT}\frac{2\alpha}{\Omega^2+\alpha^2}
所以
lim α 0 2 α Ω 2 + α 2 = { ,   Ω = 0 0 ,   Ω ̸ = 0 \lim\limits_{\alpha \to 0}\frac{2\alpha}{\Omega^2+\alpha^2}= \begin{cases} \infty, \, &\Omega = 0 \\ 0, \, &\Omega \not = 0 \end{cases}
并且
lim α 0 2 α Ω 2 + α 2 d Ω = lim α 0 2 1 1 + Ω 2 α 2 d ( Ω α ) = lim α 0 2 a r c t a n ( Ω α ) = 2 π \lim\limits_{\alpha \to 0}\int_{-\infty}^{\infty}\frac{2\alpha}{\Omega^2+\alpha^2}d\Omega=\lim\limits_{\alpha \to 0}2\int_{\infty}^{\infty}\frac{1}{1+\frac{\Omega^2}{\alpha^2}}d(\frac{\Omega}{\alpha})=\lim\limits_{\alpha \to 0}2arctan(\frac{\Omega}{\alpha})\vert_{-\infty}^{\infty}=2\pi
所以
1 C T F T 2 π δ ( Ω ) \color{red}1\xrightarrow{CTFT}2\pi\delta(\Omega)
(b)
μ ( t ) \mu(t) 既不是平方可和,也不是平方可和的,所以还得用别的办法:
μ ( t ) = 1 2 ( 1 + s g n ( t ) ) \mu(t)=\frac{1}{2}(1+sgn(t))
C T F T [ μ ( t ) ] = C T F T [ 1 2 ( 1 + s g n ( t ) ) ] = π δ ( Ω ) + 1 j Ω CTFT[\mu(t)]=CTFT[\frac{1}{2}(1+sgn(t))]=\pi\delta(\Omega)+\frac{1}{j\Omega}
(c)
这道题暂时没想到怎么做
(d)
该函数为 Λ ( 2 t ) \Lambda(2t) ,由于
Λ ( t ) C T F T ( s i n ( Ω 2 ) Ω 2 ) 2 = S a 2 ( Ω 2 ) \Lambda(t)\xrightarrow{CTFT}(\frac{sin(\frac{\Omega}{2})}{\frac{\Omega}{2}})^2=Sa^2(\frac{\Omega}{2})
所以
Λ ( 2 t ) C T F T 1 4 S a 2 ( Ω 4 ) \Lambda(2t)\xrightarrow{CTFT}\frac{1}{4}Sa^2(\frac{\Omega}{4})
返回目录

4.为了方便,式定义的高斯密度函数重写如下:
h ( t ) = 1 σ 2 π e ( t μ ) 2 2 σ 2 h(t)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(t-\mu)^2}{2\sigma^2}}
其中, σ \sigma μ \mu 分别是该密度函数的方差和均值。具有上式给出的零均值的冲激响应的连续时间的滤波器称为高斯滤波器。证明 h ( t ) h(t) C T F T CTFT 也是 Ω \Omega 的高斯函数。
解:考虑零均值的高斯函数
h ( t ) = 1 σ 2 π e t 2 2 σ 2 h(t)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{t^2}{2\sigma^2}}
a = 1 2 σ 2 a=\frac{1}{2\sigma^2} ,则
h ( t ) = 1 σ 2 π e a t 2 h(t)=\frac{1}{\sigma\sqrt{2\pi}}e^{-at^{2}}
之前已经证明
e a t 2 C T F T π a e Ω 2 4 a e^{-at^2} \xrightarrow{CTFT}\sqrt{\frac{\pi}{a}}e^{-\frac{\Omega^2}{4a}}

C T F T [ h ( t ) ] = 1 σ 2 π π a e Ω 2 4 a = e σ 2 Ω 2 2 CTFT[h(t)]=\frac{1}{\sigma\sqrt{2\pi}}\sqrt{\frac{\pi}{a}}e^{-\frac{\Omega^2}{4a}}=e^{-\frac{\sigma^2\Omega^2}{2}}
服从高斯分布。
返回目录

5.有限能量的函数 x a ( t ) = s i n ( t ) / π t x_a(t)=sin(t)/\pi t 不是绝对可和的。证明其 C T F T CTFT
X a ( j Ω ) = { 1 ,   Ω 1 0 ,   Ω > 1 X_a(j\Omega)= \begin{cases} 1, \, & \vert \Omega \vert \leq 1 \\ 0, \, & \vert \Omega \vert > 1 \end{cases}
解:
X a ( j Ω ) = x a ( t ) e j Ω t d t = s i n ( t ) π t e j Ω t d t = s i n ( t ) π t ( c o s ( Ω t ) j s i n ( Ω t ) ) d t = s i n ( t ) c o s ( Ω t ) π t d t = 0 s i n ( Ω + 1 ) t + s i n ( Ω 1 ) t π t d t = Ω + 1 π 0 s i n ( Ω + 1 ) t ( Ω + 1 ) t Ω 1 π 0 s i n ( Ω 1 ) t ( Ω 1 ) t = Ω + 1 2 Ω + 1 Ω 1 2 Ω 1 \begin{aligned} X_a(j\Omega)&=\int_{-\infty}^{\infty}x_a(t)e^{-j\Omega t}dt=\int_{-\infty}^{\infty}\frac{sin(t)}{\pi t}e^{-j\Omega t}dt \\ &=\int_{-\infty}^{\infty}\frac{sin(t)}{\pi t}(cos(\Omega t)-jsin(\Omega t))dt \\ &=\int_{-\infty}^{\infty}\frac{sin(t)cos(\Omega t)}{\pi t}dt =\int_{0}^{\infty}\frac{sin(\Omega + 1)t + sin(\Omega - 1)t}{\pi t}dt\\ &=\frac{\Omega+1}{\pi}\int_{0}^{\infty}\frac{sin(\Omega + 1)t}{(\Omega+1)t}-\frac{\Omega-1}{\pi}\int_{0}^{\infty}\frac{sin(\Omega - 1)t}{(\Omega-1)t} \\ &=\frac{\Omega+1}{2\vert \Omega + 1\vert} -\frac{\Omega-1}{2\vert \Omega - 1\vert} \end{aligned}
容易验证
X ( j Ω ) = { 1 ,   Ω 1 0 ,   Ω > 1 X(j\Omega)= \begin{cases} 1, \, &\vert \Omega \vert \leq 1 \\ 0, \, &\vert \Omega \vert > 1 \end{cases}
返回目录

6.考虑 C T F T CTFT
x a ( t ) C T F T X a ( j Ω ) x_a(t)\xleftrightarrow{CTFT}X_a(j\Omega)
证明下面的定理:
(a)时移定理: x a ( t t 0 ) C T F T X a ( j Ω ) e j Ω t 0 x_a(t-t_0)\xleftrightarrow{CTFT}X_a(j\Omega)e^{-j\Omega t_0}
(b)频移定理: x a ( t ) e j Ω 0 t C T F T X a ( j ( Ω Ω 0 ) ) x_a(t)e^{j\Omega_0t}\xleftrightarrow{CTFT}X_a(j(\Omega-\Omega_0))
(c)对称定理: X a ( t ) C T F T 2 π x a ( j Ω ) X_a(t)\xleftrightarrow{CTFT}2\pi x_a(-j\Omega)
(d)尺度缩放定理: x a ( a t ) C T F T 1 a X a ( j Ω a ) x_a(at)\xleftrightarrow{CTFT}\frac{1}{\vert a\vert}X_a(j\frac{\Omega}{a})
(e)时间微分定理: d x a ( t ) d t C T F T j Ω X a ( j Ω ) \frac{dx_a(t)}{dt}\xleftrightarrow{CTFT}j\Omega X_a(j\Omega)
解:
(a)
x a ( t t 0 ) e j Ω t d t m = t t 0 x a ( m ) e j Ω m e j Ω t 0 d t = X a ( j Ω ) e j Ω t 0 \int_{-\infty}^{\infty}x_a(t-t_0)e^{-j\Omega t}dt\xrightarrow{m=t-t_0}\int_{-\infty}^{\infty}x_a(m)e^{-j \Omega m}e^{-j \Omega t_0}dt=X_a(j\Omega)e^{-j\Omega t_0}
(b)
x a ( t ) e j Ω 0 t e j Ω t d t = x a ( t ) e j ( Ω Ω 0 ) t d t = X a ( j ( Ω Ω 0 ) ) \int_{-\infty}^{\infty}x_a(t)e^{j\Omega_0t}e^{-j\Omega t}dt=\int_{-\infty}^{\infty}x_a(t)e^{-j(\Omega-\Omega_0)t}dt=X_a(j(\Omega-\Omega_0))
(c)
x a ( t ) = 1 2 π X ( j Ω ) e j Ω t d Ω X ( j Ω ) e j Ω t d Ω = 2 π x a ( t ) x_a(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\Omega)e^{j\Omega t}d\Omega\Rightarrow\int_{-\infty}^{\infty}X(j\Omega)e^{j\Omega t}d\Omega=2\pi x_a(t)
X ( t ) e j Ω t d t = X ( t ) e j ( Ω ) t d t = 2 π x a ( j Ω ) \int_{-\infty}^{\infty}X(t)e^{-j\Omega t}dt=\int_{-\infty}^{\infty}X(t)e^{j(-\Omega) t}dt=2\pi x_a(-j \Omega)
(d)
x a ( a t ) e j Ω t d t \int_{-\infty}^{\infty}x_a(at)e^{-j\Omega t}dt
a > 0 , l = a t a>0,令l=at
x a ( l ) e j Ω a l d ( l a ) = 1 a x a ( l ) e j Ω a l d l = 1 a X a ( j Ω a ) \int_{-\infty}^{\infty}x_a(l)e^{-j\frac{\Omega}{a} l}d(\frac{l}{a})=\frac{1}{a}\int_{-\infty}^{\infty}x_a(l)e^{-j\frac{\Omega}{a} l}dl=\frac{1}{a}X_a(\frac{j \Omega}{a})
a < 0 , l = a t a<0,令l=at
x a ( l ) e j Ω a l d ( l a ) = 1 a x a ( l ) e j Ω a l d l = 1 a X a ( j Ω a ) \int_{\infty}^{-\infty}x_a(l)e^{-j\frac{\Omega}{a} l}d(\frac{l}{a})=-\frac{1}{a}\int_{-\infty}^{\infty}x_a(l)e^{-j\frac{\Omega}{a} l}dl=-\frac{1}{a}X_a(\frac{j \Omega}{a})
注意这里因为 a < 0 a<0 ,所以变量替换的时候积分上下限的正负性发生变化
综上
x a ( a t ) C T F T 1 a X a ( j Ω a ) x_a(at)\xleftrightarrow{CTFT}\frac{1}{\vert a \vert}X_a(\frac{j\Omega}{a})
(e)
x a ( t ) = 1 2 π X ( j Ω ) e j Ω t d Ω x_a(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\Omega)e^{j\Omega t}d\Omega
左右两边同时对 t t 进行积分
d x a ( t ) d t = 1 2 π j Ω X ( j Ω ) e j Ω t d Ω \frac{dx_a(t)}{dt}=\frac{1}{2\pi}\int_{-\infty}^{\infty}j\Omega X(j\Omega)e^{j\Omega t}d\Omega
所以
d x a ( t ) d t C T F T j Ω X a ( j Ω ) \frac{dx_a(t)}{dt}\xleftrightarrow{CTFT}j\Omega X_a(j\Omega)
返回目录

7. X a ( j Ω ) X_a(j\Omega) 表示实值连续时间函数 x a ( t ) x_a(t) C T F T CTFT 。证明其幅度谱 X a ( j Ω ) \vert X_a(j\Omega) \vert Ω \Omega 的偶函数,而相位谱 θ ( Ω ) = a r g { X a ( j Ω ) } \theta(\Omega)=arg\{X_a(j\Omega)\} Ω \Omega 的奇函数。
解:由于 x a ( t ) x_a(t) 为实值函数,所以 x a ( t ) = x a ( t ) x_a(t)=x^{*}_a(t)
x a ( t ) e j Ω t d t = ( x a ( t ) e j ( Ω ) t d t ) = X a ( j Ω ) \int_{\infty}^{-\infty}x^{*}_a(t)e^{-j\Omega t}dt=(\int_{\infty}^{-\infty}x_a(t)e^{-j(-\Omega) t}dt)^{*}=X^{*}_a(-j\Omega)
X a ( j Ω ) = X a ( j Ω ) X a ( j Ω ) = X a ( j Ω ) \Rightarrow X_a(j\Omega)=X^{*}_a(-j\Omega) \Rightarrow X_a(-j\Omega)=X^{*}_a(j\Omega)

X a ( j Ω ) = X a ( j Ω ) = X ( j Ω ) \vert X_a(j\Omega) \vert = \vert X^{*}_a(j\Omega)\vert = \vert X(-j\Omega) \vert
a r g { X a ( j Ω ) } = a r g { X a ( j Ω ) } = a r g { X a ( j Ω ) } arg\{X_a(j\Omega)\}=-arg\{X^{*}_a(j\Omega)\}=-arg\{X_a(-j\Omega)\}
所以其幅度谱为偶函数,其相位谱为奇函数。
返回目录

8.证明式
h H T ( t ) = 1 π t h_{HT}(t)=\frac{1}{\pi t}
定义的希尔伯特变换的 C T F T CTFT
H H T ( j Ω ) = { j ,   Ω > 0 j ,   Ω < 0 H_{HT}(j\Omega)= \begin{cases} -j, \, &\Omega > 0 \\ j, \, &\Omega < 0 \end{cases}
解:
H H T ( j Ω ) = 1 π t e j Ω t d t = 1 π c o s Ω t j s i n Ω t t d t = 2 j Ω π 0 s i n Ω t Ω t d t = j Ω Ω = { j ,   Ω > 0 j ,   Ω < 0 \begin{aligned} H_{HT}(j\Omega)&=\int_{-\infty}^{\infty}\frac{1}{\pi t}e^{-j\Omega t}dt \\ &=\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{cos\Omega t -jsin\Omega t}{t}dt \\ &=\frac{-2j\Omega}{\pi}\int_{0}^{\infty}\frac{sin\Omega t}{\Omega t}dt \\ &=-j\frac{\Omega}{\vert \Omega \vert} \\ &=\begin{cases} -j, \, &\Omega > 0 \\ j, \, &\Omega < 0 \end{cases} \end{aligned}
这里使用了一个结论
0 s i n Ω t Ω t d t = π 2 Ω \int_{0}^{\infty}\frac{sin\Omega t}{\Omega t}dt=\frac{\pi}{2\vert \Omega \vert}
返回目录

9. x ( t ) x(t) 是实值输入信号,其 C T F T CTFT X ( j Ω ) = X p ( j Ω ) + X n ( j Ω ) X(j\Omega)=X_p(j\Omega)+X_n(j\Omega) ,其中 X p ( j Ω ) X_p(j\Omega) 是占据 X ( j Ω ) X(j\Omega) 正频率范围的分量, X n ( j Ω ) X_n(j\Omega) 是占据 X ( j Ω ) X(j\Omega) 负频率范围的分量。令 x ^ ( t ) \hat{x}(t) 表示 x ( t ) x(t) 的希尔伯特变换。证明:复值信号 y ( t ) = x ( t ) + j x ^ ( t ) y(t)=x(t)+j\hat{x}(t) C T F T   Y ( j Ω ) CTFT\, Y(j\Omega) Y ( j Ω ) = 2 X p ( j Ω ) Y(j\Omega)=2X_p(j\Omega) ,即 y ( t ) y(t) 的谱只包含正频率范围的分量。
解:
由希尔伯特变换的定义
X ^ ( j Ω ) = j X p ( j Ω ) + j X n ( j Ω ) \hat{X}(j\Omega)=-jX_p(j\Omega)+jX_n(j\Omega)
则信号 y ( t ) = x ( t ) + j x ^ ( t ) y(t)=x(t)+j\hat{x}(t) 的傅里叶变换为
Y ( j Ω ) = X ( j Ω ) + j X ^ ( j Ω ) = X p ( j Ω ) + X n ( j Ω ) + j ( j X p ( j Ω ) + j X n ( j Ω ) ) = 2 X p ( j Ω ) \begin{aligned} Y(j\Omega)&=X(j\Omega)+j\hat{X}(j\Omega)\\ &=X_p(j\Omega)+X_n(j\Omega)+j(-jX_p(j\Omega)+jX_n(j\Omega))\\ &=2X_p(j\Omega) \end{aligned}
返回目录

10.计算式
x a ( t ) = { e α t ,   t 0 0 ,   t < 0 x_a(t)= \begin{cases} e^{-\alpha t}, \, &t \geq 0 \\ 0, \, & t < 0 \end{cases}
中连续时间信号在 α = 0.6 \alpha=0.6 时的总能量,并计算其 75 % 75\% 带宽。
解:
ε 2 = x 2 ( t ) d t = e 2 α t d t = 1 2 α = 5 6 \varepsilon^2=\int_{-\infty}^\infty x^2(t)dt=\int_{-\infty}^\infty e^{-2\alpha t}dt = \frac{1}{2\alpha}=\frac{5}{6}
X ( j Ω ) = 1 α j Ω X(j\Omega)=\frac{1}{\alpha-j\Omega}

1 2 π Ω c Ω c X ( j Ω ) X ( j Ω ) d Ω = 1 2 π Ω c Ω c 1 α 2 + Ω 2 d Ω = 0.75 1 2 α = 3 8 α \frac{1}{2\pi}\int_{-\Omega_c}^{\Omega_c}X(j\Omega)X^{*}(j\Omega)d\Omega=\frac{1}{2\pi}\int_{-\Omega_c}^{\Omega_c}\frac{1}{\alpha^2 + \Omega^2}d\Omega=0.75 \cdot \frac{1}{2\alpha}=\frac{3}{8\alpha}

1 2 π Ω c Ω c 1 α 2 + Ω 2 d Ω = 1 2 π Ω c Ω c 1 α 1 1 + ( Ω α ) 2 d Ω α = 1 α π a r c t a n ( Ω c α ) \frac{1}{2\pi}\int_{-\Omega_c}^{\Omega_c}\frac{1}{\alpha^2 + \Omega^2}d\Omega=\frac{1}{2\pi}\int_{-\Omega_c}^{\Omega_c}\frac{1}{\alpha}\frac{1}{1+(\frac{\Omega}{\alpha})^2}d\frac{\Omega}{\alpha}=\frac{1}{\alpha\pi}arctan(\frac{\Omega_c}{\alpha})
a r c t a n ( Ω c α ) = 3 π 8 \Rightarrow arctan(\frac{\Omega_c}{\alpha})=\frac{3\pi}{8}
返回目录

猜你喜欢

转载自blog.csdn.net/The_last_knight/article/details/84894531