Java集合:HashMap详解(JDK 1.8与1.7以前区别)

版权声明:本人原创,转载请注明来源! https://blog.csdn.net/KAIKAI_ING/article/details/83963486

Java集合:HashMap详解(JDK 1.8与1.7以前区别)

1. 概述

HashMap是Java程序员使用频率最高的用于映射(键值对)处理的数据类型。HashMap:它根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但遍历顺序却是不确定的。HashMap最多只允许一条记录的键为null,允许多条记录的值为null。HashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以用Collections的synchronizedMap方法使HashMap具有线程安全的能力,或者使用ConcurrentHashMap。

2. 内部实现:

2.1 存储结构/底层结构:随着JDK(Java Developmet Kit)版本的更新,JDK1.8对HashMap底层的实现进行了优化,例如引入红黑树的数据结构和扩容的优化等。JDK 1.8HashMap底层实现由之前的“数组+链表”改为“数组+链表+红黑树”。JDK1.8的HashMap的数据结构如下图所示,当链表节点较少时仍然是以链表存在,当链表节点较多时(大于8)会转为红黑树。

HashMap底层结构

2.2 功能实现-方法:HashMap的内部功能实现很多,下面主要从根据key获取哈希桶数组索引位置、put方法的详细执行、扩容过程三个具有代表性的点深入展开讲解。
1. 定位哈希桶数组索引位置
不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是“数组+链表+红黑树”的结合,所以我们当然希望这个HashMap里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表/红黑树,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。下面是定位哈希桶数组的源码:
// 代码1
static final int hash(Object key) { // 计算key的hash值
    int h;
    // 1.先拿到key的hashCode值; 2.将hashCode的高16位参与运算
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
// 代码2
int n = tab.length;
// 将(tab.length - 1) 与 hash值进行&运算
int index = (n - 1) & hash;

整个过程本质上就是三步:
  1. 拿到key的hashCode值
  2. 将hashCode的高位参与运算,重新计算hash值
  3. 将计算出来的hash值与(table.length - 1)进行&运算
方法解读:

对于任意给定的对象,只要它的hashCode()返回值相同,那么计算得到的hash值总是相同的。我们首先想到的就是把hash值对table长度取模运算,这样一来,元素的分布相对来说是比较均匀的。

但是模运算消耗还是比较大的,我们知道计算机比较快的运算为位运算,因此JDK团队对取模运算进行了优化,使用上面代码2的位与运算来代替模运算。这个方法非常巧妙,它通过 “(table.length -1) & h” 来得到该对象的索引位置,这个优化是基于以下公式:x mod 2^n = x & (2^n - 1)。我们知道HashMap底层数组的长度总是2的n次方,并且取模运算为“h mod table.length”,对应上面的公式,可以得到该运算等同于“h & (table.length - 1)”。这是HashMap在速度上的优化,因为&比%具有更高的效率。

在JDK1.8的实现中,还优化了高位运算的算法,将hashCode的高16位与hashCode进行异或运算,主要是为了在table的length较小的时候,让高位也参与运算,并且不会有太大的开销。

2. 分析HashMap的put方法
  1. 判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
  2. 根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向6,如果table[i]不为空,转向3;
  3. 判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向4,这里的相同指的是hashCode以及equals;
  4. 判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向5;
  5. 遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
  6. 插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。
JDK1.8 HashMap的put方法源码如下:
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}
 
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // table是否为空或者length等于0, 如果是则调用resize方法进行初始化
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;    
    // 通过hash值计算索引位置, 如果table表该索引位置节点为空则新增一个
    if ((p = tab[i = (n - 1) & hash]) == null)// 将索引位置的头节点赋值给p
        tab[i] = newNode(hash, key, value, null);
    else {  // table表该索引位置不为空
        Node<K,V> e; K k;
        if (p.hash == hash && // 判断p节点的hash值和key值是否跟传入的hash值和key值相等
            ((k = p.key) == key || (key != null && key.equals(k)))) 
            e = p;  // 如果相等, 则p节点即为要查找的目标节点,赋值给e
        // 判断p节点是否为TreeNode, 如果是则调用红黑树的putTreeVal方法查找目标节点
        else if (p instanceof TreeNode) 
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {	// 走到这代表p节点为普通链表节点
            for (int binCount = 0; ; ++binCount) {  // 遍历此链表, binCount用于统计节点数
                if ((e = p.next) == null) { // p.next为空代表不存在目标节点则新增一个节点插入链表尾部
                    p.next = newNode(hash, key, value, null);
                    // 计算节点是否超过8个, 减一是因为循环是从p节点的下一个节点开始的
                    if (binCount >= TREEIFY_THRESHOLD - 1)
                        treeifyBin(tab, hash);// 如果超过8个,调用treeifyBin方法将该链表转换为红黑树
                    break;
                }
                if (e.hash == hash && // e节点的hash值和key值都与传入的相等, 则e即为目标节点,跳出循环
                    ((k = e.key) == key || (key != null && key.equals(k)))) 
                    break;
                p = e;  // 将p指向下一个节点
            }
        }
        // e不为空则代表根据传入的hash值和key值查找到了节点,将该节点的value覆盖,返回oldValue
        if (e != null) { 
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e); // 用于LinkedHashMap
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold) // 插入节点后超过阈值则进行扩容
        resize();
    afterNodeInsertion(evict);  // 用于LinkedHashMap
    return null;
}

3. 扩容机制
resize方法具体如下:
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {   // 老table不为空
        if (oldCap >= MAXIMUM_CAPACITY) {      // 老table的容量超过最大容量值
            threshold = Integer.MAX_VALUE;  // 设置阈值为Integer.MAX_VALUE
            return oldTab;
        }
        // 如果容量*2<最大容量并且>=16, 则将阈值设置为原来的两倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)   
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // 老表的容量为0, 老表的阈值大于0, 是因为初始容量被放入阈值
        newCap = oldThr;	// 则将新表的容量设置为老表的阈值 
    else {	// 老表的容量为0, 老表的阈值为0, 则为空表,设置默认容量和阈值
        newCap = DEFAULT_INITIAL_CAPACITY; 
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {  // 如果新表的阈值为空, 则通过新的容量*负载因子获得阈值
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr; // 将当前阈值赋值为刚计算出来的新的阈值
    @SuppressWarnings({"rawtypes","unchecked"})
    // 定义新表,容量为刚计算出来的新容量
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab; // 将当前的表赋值为新定义的表
    if (oldTab != null) {   // 如果老表不为空, 则需遍历将节点赋值给新表
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {  // 将索引值为j的老表头节点赋值给e
                oldTab[j] = null; // 将老表的节点设置为空, 以便垃圾收集器回收空间
                // 如果e.next为空, 则代表老表的该位置只有1个节点, 
                // 通过hash值计算新表的索引位置, 直接将该节点放在该位置
                if (e.next == null) 
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                	 // 调用treeNode的hash分布(跟下面最后一个else的内容几乎相同)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); 
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null; // 存储跟原索引位置相同的节点
                    Node<K,V> hiHead = null, hiTail = null; // 存储索引位置为:原索引+oldCap的节点
                    Node<K,V> next;
                    do {
                        next = e.next;
                        //如果e的hash值与老表的容量进行与运算为0,则扩容后的索引位置跟老表的索引位置一样
                        if ((e.hash & oldCap) == 0) {   
                            if (loTail == null) // 如果loTail为空, 代表该节点为第一个节点
                                loHead = e; // 则将loHead赋值为第一个节点
                            else    
                                loTail.next = e;    // 否则将节点添加在loTail后面
                            loTail = e; // 并将loTail赋值为新增的节点
                        }
                        //如果e的hash值与老表的容量进行与运算为1,则扩容后的索引位置为:老表的索引位置+oldCap
                        else {  
                            if (hiTail == null) // 如果hiTail为空, 代表该节点为第一个节点
                                hiHead = e; // 则将hiHead赋值为第一个节点
                            else
                                hiTail.next = e;    // 否则将节点添加在hiTail后面
                            hiTail = e; // 并将hiTail赋值为新增的节点
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null; // 最后一个节点的next设为空
                        newTab[j] = loHead; // 将原索引位置的节点设置为对应的头结点
                    }
                    if (hiTail != null) {
                        hiTail.next = null; // 最后一个节点的next设为空
                        newTab[j + oldCap] = hiHead; // 将索引位置为原索引+oldCap的节点设置为对应的头结点
                    }
                }
            }
        }
    }
    return newTab;
}

总结:

  1. HashMap的底层是个Node数组(Node<K,V>[] table),在数组的具体索引位置,如果存在多个节点,则可能是以链表或红黑树的形式存在。
  2. 增加、删除、查找键值对时,定位到哈希桶数组的位置是很关键的一步,源码中是通过下面3个操作来完成这一步:1)拿到key的hashCode值;2)将hashCode的高位参与运算,重新计算hash值;3)将计算出来的hash值与(table.length - 1)进行&运算。
  3. HashMap的默认初始容量(capacity)是16,capacity必须为2的幂次方;默认负载因子(load factor)是0.75;实际能存放的节点个数(threshold,即触发扩容的阈值)= capacity * load factor。
  4. HashMap在触发扩容后,阈值会变为原来的2倍,并且会进行重hash,重hash后索引位置index的节点的新分布位置最多只有两个:原索引位置或原索引+oldCap位置。例如capacity为16,索引位置5的节点扩容后,只可能分布在新报索引位置5和索引位置21(5+16)。
  5. 导致HashMap扩容后,同一个索引位置的节点重hash最多分布在两个位置的根本原因是:1)table的长度始终为2的n次方;2)索引位置的计算方法为“(table.length - 1) & hash”。HashMap扩容是一个比较耗时的操作,定义HashMap时尽量给个接近的初始容量值。
  6. HashMap有threshold属性和loadFactor属性,但是没有capacity属性。初始化时,如果传了初始化容量值,该值是存在threshold变量,并且Node数组是在第一次put时才会进行初始化,初始化时会将此时的threshold值作为新表的capacity值,然后用capacity和loadFactor计算新表的真正threshold值。
  7. 当同一个索引位置的节点在增加后达到9个时,会触发链表节点(Node)转红黑树节点(TreeNode,间接继承Node),转成红黑树节点后,其实链表的结构还存在,通过next属性维持。链表节点转红黑树节点的具体方法为源码中的treeifyBin(Node<K,V>[] tab, int hash)方法。
  8. 当同一个索引位置的节点在移除后达到6个时,并且该索引位置的节点为红黑树节点,会触发红黑树节点转链表节点。红黑树节点转链表节点的具体方法为源码中的untreeify(HashMap<K,V> map)方法。
  9. HashMap在JDK1.8之后不再有死循环的问题,JDK1.8之前存在死循环的根本原因是在扩容后同一索引位置的节点顺序会反掉。
  10. HashMap是非线程安全的,在并发场景下使用ConcurrentHashMap来代替。

参考文章:

https://blog.csdn.net/v123411739/article/details/78996181
https://blog.csdn.net/m0_38008272/article/details/79388426

猜你喜欢

转载自blog.csdn.net/KAIKAI_ING/article/details/83963486