Hubbard-Stratonovich Transform

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u012284960/article/details/82874003

Theorem 1: H-S transform in real domain (scalar)
e x 2 = η 2 π exp ( η 2 z 2 + 2 η x z ) d z , x , η e^{x^2}=\sqrt{\frac{\eta}{2\pi}}\int \exp \left({-\frac{\eta}{2}z^2+\sqrt{2\eta}xz}\right)\text{d}z, \quad \forall x,\eta
p r o o f proof : Given the Gaussian distribution N ( x 2 η z , 1 η ) \mathcal{N}(x|\sqrt{\frac{2}{\eta}}z,\frac{1}{\eta}) , we have following formula , thanks to the normalization of PDF,
η 2 π exp [ η 2 ( x 2 η z ) 2 ] d x = 1 \int \sqrt{\frac{\eta}{2\pi}}\exp \left[-\frac{\eta}{2}(x-\sqrt{\frac{2}{\eta}}z)^2\right]\text{d}x=1
Expand the formula above, we get
η 2 π exp ( η 2 x 2 + 2 η x z ) d x = e z 2 \int \sqrt{\frac{\eta}{2\pi}}\exp \left(-\frac{\eta}{2}x^2+\sqrt{2\eta}xz\right)\text{d}x=e^{z^2}
Interchanging the x x and z z , we have finished the proof.

Theorem 2: H-S transform in real domain (scalar)
e x 2 = η 2 π exp ( η 2 z 2 + j 2 η x z ) d z , x , η e^{-x^2}=\sqrt{\frac{\eta}{2\pi}}\int \exp \left({-\frac{\eta}{2}z^2+j\sqrt{2\eta}xz}\right)\text{d}z, \quad \forall x,\eta
where j = 1 j=\sqrt{-1} .

p r o o f proof : Similarly as the proof of theorem 1, we also use the normalization of Gaussian PDF. Given the Gaussian distribution as below
N ( x j 2 η z , 1 η ) = η 2 π exp [ η 2 ( x j 2 η z ) 2 ] \mathcal{N}\left({x|j\sqrt{\frac{2}{\eta}}z,\frac{1}{\eta}}\right)=\sqrt{\frac{\eta}{2\pi}}\exp \left[{-\frac{\eta}{2}(x-j\sqrt{\frac{2}{\eta}}z)^2}\right]
Using the normalization of PDF, we have
η 2 π exp [ η 2 x 2 + j 2 η x z ] d x = e z 2 \int \sqrt{\frac{\eta}{2\pi}}\exp \left[{-\frac{\eta}{2}x^2+j\sqrt{2\eta}xz}\right]\text{d}x=e^{-z^2}
Interchanging x x and z z yields the theorem 2.

Theorem 3:
e x 2 = ( η 2 π ) N / 2 exp ( η 2 z T z + 2 η x T z ) d z e^{\|\boldsymbol{x}\|^2}=\int \left({\frac{\eta}{2\pi}}\right)^{N/2}\exp \left({-\frac{\eta}{2}\boldsymbol{z}^T\boldsymbol{z}+\sqrt{2\eta}\boldsymbol{x}^T\boldsymbol{z}}\right)\text{d}\boldsymbol{z}
p r o o f proof : Given the vector Gaussian distribution
N ( x 2 η z , 1 η I ) = ( η 2 π ) N / 2 exp [ η 2 x 2 η z 2 ] \mathcal{N}\left({\boldsymbol{x}|\sqrt{\frac{2}{\eta}}z,\frac{1}{\eta}\mathbf{I}}\right)=\left({\frac{\eta}{2\pi}}\right)^{N/2}\exp \left[{-\frac{\eta}{2}\|\boldsymbol{x}-\sqrt{\frac{2}{\eta}}\boldsymbol{z}\|^2}\right]
Using the normalization of Gaussian distribution, we have
( η 2 π ) N / 2 exp [ η 2 x T x + 2 η x T z ] d x = e z T z \int \left({\frac{\eta}{2\pi}}\right)^{N/2} \exp \left[{-\frac{\eta}{2}\boldsymbol{x}^T\boldsymbol{x}+\sqrt{2\eta}\boldsymbol{x}^T\boldsymbol{z}}\right]\text{d}\boldsymbol{x}=e^{\boldsymbol{z}^T\boldsymbol{z}}
Interchanging the x \boldsymbol{x} and z \boldsymbol{z} yields theorem 3.

Theorem 4:
e x 2 = ( η 2 π ) N / 2 exp ( η 2 z T z + j 2 η x T z ) d z e^{-\|\boldsymbol{x}\|^2}=\int \left({\frac{\eta}{2\pi}}\right)^{N/2}\exp \left({-\frac{\eta}{2}\boldsymbol{z}^T\boldsymbol{z}+j\sqrt{2\eta}\boldsymbol{x}^T\boldsymbol{z}}\right)\text{d}\boldsymbol{z}
p r o o f proof : see the proof of theorem 2 and theorem 3.

猜你喜欢

转载自blog.csdn.net/u012284960/article/details/82874003