vcglib中面自相交的检测算法

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/seamanj/article/details/86755941

meshlab是基于vcglib写的, 最近需要检测mesh的自相交, 于是来看看它的源代码

  static bool SelfIntersections(MeshType &m, std::vector<FaceType*> &ret)
  {
    RequirePerFaceMark(m);
    ret.clear();
    int referredBit = FaceType::NewBitFlag();
    tri::UpdateFlags<MeshType>::FaceClear(m,referredBit);

    TriMeshGrid gM;
    gM.Set(m.face.begin(),m.face.end());

    for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
    {
      (*fi).SetUserBit(referredBit);
      Box3< ScalarType> bbox;
      (*fi).GetBBox(bbox);
      std::vector<FaceType*> inBox;
      vcg::tri::GetInBoxFace(m, gM, bbox,inBox);
      bool Intersected=false;
      typename std::vector<FaceType*>::iterator fib;
      for(fib=inBox.begin();fib!=inBox.end();++fib)
      {
        if(!(*fib)->IsUserBit(referredBit) && (*fib != &*fi) )
          if(Clean<MeshType>::TestFaceFaceIntersection(&*fi,*fib)){
            ret.push_back(*fib);
            if(!Intersected) {
              ret.push_back(&*fi);
              Intersected=true;
            }
          }
      }
      inBox.clear();
    }

    FaceType::DeleteBitFlag(referredBit);
    return (ret.size()>0);
  }

对于每个面, 算个包围盒, 然后算出包围盒里面的面, 然后执行TestFaceFaceIntersection

  static	bool TestFaceFaceIntersection(FaceType *f0,FaceType *f1)
  {
    int sv = face::CountSharedVertex(f0,f1);
    if(sv==3) return true;
    if(sv==0) return (vcg::IntersectionTriangleTriangle<FaceType>((*f0),(*f1)));
    //  if the faces share only a vertex, the opposite edge (as a segment) is tested against the face
    //  to avoid degenerate cases where the two triangles have the opposite edge on a common plane
    //  we offset the segment to test toward the shared vertex
    if(sv==1)
    {
      int i0,i1; ScalarType a,b;
      face::FindSharedVertex(f0,f1,i0,i1);
      CoordType shP = f0->V(i0)->P()*0.5;
      if(vcg::IntersectionSegmentTriangle(Segment3<ScalarType>((*f0).V1(i0)->P()*0.5+shP,(*f0).V2(i0)->P()*0.5+shP), *f1, a, b) )
      {
        // a,b are the param coords of the intersection point of the segment.
        if(a+b>=1 || a<=EPSIL || b<=EPSIL ) return false;
        return true;
      }
      if(vcg::IntersectionSegmentTriangle(Segment3<ScalarType>((*f1).V1(i1)->P()*0.5+shP,(*f1).V2(i1)->P()*0.5+shP), *f0, a, b) )
      {
        // a,b are the param coords of the intersection point of the segment.
        if(a+b>=1 || a<=EPSIL || b<=EPSIL ) return false;
        return true;
      }

    }
    return false;
  }

上面是检测两个面相交的算法:

先检测有几个共离点, 3个的话就判断为相交, 0的话就执行IntersectionTriangleTriangle,
1的话, 就用这个点的对边执行IntersectionSegmentTriangle

这里的segment加上了偏移,看英文 注释

接着看IntersectionTriangleTriangle

  template<class T>
    inline bool IntersectionTriangleTriangle(Point3<T> V0,Point3<T> V1,Point3<T> V2,
                 Point3<T> U0,Point3<T> U1,Point3<T> U2){
    return NoDivTriTriIsect(V0,V1,V2,U0,U1,U2);
  }
template<class T>
/* 
	@param V0 A vertex of the first triangle
	@param V1 A vertex of the first triangle
	@param V2 A vertex of the first triangle
	@param U0 A vertex of the second triangle
	@param U1 A vertex of the second triangle
	@param U2 A vertex of the second triangle
	@return true if the two triangles interesect
*/
bool NoDivTriTriIsect(const Point3<T> V0,const Point3<T> V1,const Point3<T> V2,
                      const Point3<T> U0,const Point3<T> U1,const Point3<T> U2)
{
  Point3<T> E1,E2;
  Point3<T> N1,N2;
	T d1,d2;
  T du0,du1,du2,dv0,dv1,dv2;
  Point3<T> D;
  T isect1[2], isect2[2];
  T du0du1,du0du2,dv0dv1,dv0dv2;
  short index;
  T vp0,vp1,vp2;
  T up0,up1,up2;
  T bb,cc,max;

  /* compute plane equation of triangle(V0,V1,V2) */
  SUB(E1,V1,V0);
  SUB(E2,V2,V0);
  CROSS(N1,E1,E2);
	N1.Normalize(); // aggiunto rispetto al codice orig.
  d1=-DOT(N1,V0);
  /* plane equation 1: N1.X+d1=0 */

  /* put U0,U1,U2 into plane equation 1 to compute signed distances to the plane*/
  du0=DOT(N1,U0)+d1;
  du1=DOT(N1,U1)+d1;
  du2=DOT(N1,U2)+d1;

  /* coplanarity robustness check */
#ifdef USE_TRI_TRI_INT_EPSILON_TEST
  if(FABS(du0)<TRI_TRI_INT_EPSILON) du0=0.0;
  if(FABS(du1)<TRI_TRI_INT_EPSILON) du1=0.0;
  if(FABS(du2)<TRI_TRI_INT_EPSILON) du2=0.0;
#endif
  du0du1=du0*du1;
  du0du2=du0*du2;

  if(du0du1>0.0f && du0du2>0.0f) /* same sign on all of them + not equal 0 ? */
    return 0;                    /* no intersection occurs */

  /* compute plane of triangle (U0,U1,U2) */
  SUB(E1,U1,U0);
  SUB(E2,U2,U0);
  CROSS(N2,E1,E2);
  d2=-DOT(N2,U0);
  /* plane equation 2: N2.X+d2=0 */

  /* put V0,V1,V2 into plane equation 2 */
  dv0=DOT(N2,V0)+d2;
  dv1=DOT(N2,V1)+d2;
  dv2=DOT(N2,V2)+d2;

#ifdef USE_TRI_TRI_INT_EPSILON_TEST
  if(FABS(dv0)<TRI_TRI_INT_EPSILON) dv0=0.0;
  if(FABS(dv1)<TRI_TRI_INT_EPSILON) dv1=0.0;
  if(FABS(dv2)<TRI_TRI_INT_EPSILON) dv2=0.0;
#endif

  dv0dv1=dv0*dv1;
  dv0dv2=dv0*dv2;

  if(dv0dv1>0.0f && dv0dv2>0.0f) /* same sign on all of them + not equal 0 ? */
    return 0;                    /* no intersection occurs */

  /* compute direction of intersection line */
  CROSS(D,N1,N2);

  /* compute and index to the largest component of D */
  max=(T)FABS(D[0]);
  index=0;
  bb=(T)FABS(D[1]);
  cc=(T)FABS(D[2]);
  if(bb>max) max=bb,index=1;
  if(cc>max) max=cc,index=2;

  /* this is the simplified projection onto L*/
  vp0=V0[index];
  vp1=V1[index];
  vp2=V2[index];

  up0=U0[index];
  up1=U1[index];
  up2=U2[index];

  /* compute interval for triangle 1 */
  T a,b,c,x0,x1;
  NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1);

  /* compute interval for triangle 2 */
  T d,e,f,y0,y1;
  NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1);

  T xx,yy,xxyy,tmp;
  xx=x0*x1;
  yy=y0*y1;
  xxyy=xx*yy;

  tmp=a*xxyy;
  isect1[0]=tmp+b*x1*yy;
  isect1[1]=tmp+c*x0*yy;

  tmp=d*xxyy;
  isect2[0]=tmp+e*xx*y1;
  isect2[1]=tmp+f*xx*y0;

  SORT(isect1[0],isect1[1]);
  SORT(isect2[0],isect2[1]);

  if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0;
  return 1;
}

这个算法详细请看论文 A Fast Triangle-Triangle Intersection Test
https://web.stanford.edu/class/cs277/resources/papers/Moller1997b.pdf

原理就是公式(4), 这里的代码在两边同时乘以了 ( d v 0 1 d v 1 1 ) ( d u 0 1 d u 1 1 ) (d_{v_0^1}-d_{v_1^1})(d_{u_0^1}-d_{u_1^1})

#define NEWCOMPUTE_INTERVALS(VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,A,B,C,X0,X1) \
{ \
        if(D0D1>0.0f) \
        { \
                /* here we know that D0D2<=0.0 */ \
            /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
                A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \
        } \
        else if(D0D2>0.0f)\
        { \
                /* here we know that d0d1<=0.0 */ \
            A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \
        } \
        else if(D1*D2>0.0f || D0!=0.0f) \
        { \
                /* here we know that d0d1<=0.0 or that D0!=0.0 */ \
                A=VV0; B=(VV1-VV0)*D0; C=(VV2-VV0)*D0; X0=D0-D1; X1=D0-D2; \
        } \
        else if(D1!=0.0f) \
        { \
                A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \
        } \
        else if(D2!=0.0f) \
        { \
                A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \
        } \
        else \
        { \
                /* triangles are coplanar */ \
                return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2); \
        } \
}

再来看看两个三角形共面的情形

template<class T>
/** CHeck two triangles for coplanarity
	@param N
	@param V0 A vertex of the first triangle
	@param V1 A vertex of the first triangle
	@param V2 A vertex of the first triangle
	@param U0 A vertex of the second triangle
	@param U1 A vertex of the second triangle
	@param U2 A vertex of the second triangle
	@return true se due triangoli sono cooplanari, false altrimenti

*/
bool coplanar_tri_tri(const Point3<T> N, const Point3<T> V0, const Point3<T> V1,const Point3<T> V2,
										 const Point3<T> U0, const Point3<T> U1,const Point3<T> U2)
{
   T A[3];
   short i0,i1;
   /* first project onto an axis-aligned plane, that maximizes the area */
   /* of the triangles, compute indices: i0,i1. */
   A[0]=FABS(N[0]);
   A[1]=FABS(N[1]);
   A[2]=FABS(N[2]);
   if(A[0]>A[1])
   {
      if(A[0]>A[2])
      {
          i0=1;      /* A[0] is greatest */
          i1=2;
      }
      else
      {
          i0=0;      /* A[2] is greatest */
          i1=1;
      }
   }
   else   /* A[0]<=A[1] */
   {
      if(A[2]>A[1])
      {
          i0=0;      /* A[2] is greatest */
          i1=1;
      }
      else
      {
          i0=0;      /* A[1] is greatest */
          i1=2;
      }
    }

    /* test all edges of triangle 1 against the edges of triangle 2 */
    EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2);
    EDGE_AGAINST_TRI_EDGES(V1,V2,U0,U1,U2);
    EDGE_AGAINST_TRI_EDGES(V2,V0,U0,U1,U2);

    /* finally, test if tri1 is totally contained in tri2 or vice versa */
    POINT_IN_TRI(V0,U0,U1,U2);
    POINT_IN_TRI(U0,V0,V1,V2);

    return 0;
}
#define EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2) \
{                                              \
  T Ax,Ay,Bx,By,Cx,Cy,e,d,f;               \
  Ax=V1[i0]-V0[i0];                            \
  Ay=V1[i1]-V0[i1];                            \
  /* test edge U0,U1 against V0,V1 */          \
  EDGE_EDGE_TEST(V0,U0,U1);                    \
  /* test edge U1,U2 against V0,V1 */          \
  EDGE_EDGE_TEST(V0,U1,U2);                    \
  /* test edge U2,U1 against V0,V1 */          \
  EDGE_EDGE_TEST(V0,U2,U0);                    \
}

先用边检测是否相交于三角形, 如果不相交再检测整个三角形是否在另一个三角形里面(只需要检测一个点即可)

#define EDGE_EDGE_TEST(V0,U0,U1)                      \
  Bx=U0[i0]-U1[i0];                                   \
  By=U0[i1]-U1[i1];                                   \
  Cx=V0[i0]-U0[i0];                                   \
  Cy=V0[i1]-U0[i1];                                   \
  f=Ay*Bx-Ax*By;                                      \
  d=By*Cx-Bx*Cy;                                      \
  if((f>0 && d>=0 && d<=f) || (f<0 && d<=0 && d>=f))  \
  {                                                   \
    e=Ax*Cy-Ay*Cx;                                    \
    if(f>0)                                           \
    {                                                 \
      if(e>=0 && e<=f) return 1;                      \
    }                                                 \
    else                                              \
    {                                                 \
      if(e<=0 && e>=f) return 1;                      \
    }                                                 \
  }

边检测原理
在这里插入图片描述

原理就是如果a,b相交, 那么 ab形成的四边形面积要比ac和bc形成的面积要大
并且b->a 和 c->b以及a->c所指的方向 应该一样

#define POINT_IN_TRI(V0,U0,U1,U2)           \
{                                           \
  T a,b,c,d0,d1,d2;                     \
  /* is T1 completly inside T2? */          \
  /* check if V0 is inside tri(U0,U1,U2) */ \
  a=U1[i1]-U0[i1];                          \
  b=-(U1[i0]-U0[i0]);                       \
  c=-a*U0[i0]-b*U0[i1];                     \
  d0=a*V0[i0]+b*V0[i1]+c;                   \
                                            \
  a=U2[i1]-U1[i1];                          \
  b=-(U2[i0]-U1[i0]);                       \
  c=-a*U1[i0]-b*U1[i1];                     \
  d1=a*V0[i0]+b*V0[i1]+c;                   \
                                            \
  a=U0[i1]-U2[i1];                          \
  b=-(U0[i0]-U2[i0]);                       \
  c=-a*U2[i0]-b*U2[i1];                     \
  d2=a*V0[i0]+b*V0[i1]+c;                   \
  if(d0*d1>0.0)                             \
  {                                         \
    if(d0*d2>0.0) return 1;                 \
  }                                         \
}

最后来看检测一个点是否在三角形内

提出a,b可得知

就是检测U0V0和U0U1的叉乘 d0
U1V0和U1U2的叉乘d1
U2V0和U2U0的叉乘d2
三个方向一致

在这里插入图片描述

最后看下, 线段与三角形的相交

/**
* Compute the intersection between a segment and a triangle.
* It relies on the lineTriangle Intersection
* @param[in]	segment
* @param[in]	triangle vertices
* @param[out]=(t,u,v)	the intersection point, meaningful only if the line of segment intersects the triangle
*            t     is the baricentric coord of the point on the segment
*            (u,v) are the baricentric coords of the intersection point in the segment
*
*/
template<class ScalarType>
bool IntersectionSegmentTriangle( const vcg::Segment3<ScalarType> & seg,
                                   const Point3<ScalarType> & vert0,
                                    const Point3<ScalarType> & vert1, const
                                    Point3<ScalarType> & vert2,
                                    ScalarType & a ,ScalarType & b)
{
    //control intersection of bounding boxes
    vcg::Box3<ScalarType> bb0,bb1;
    bb0.Add(seg.P0());
    bb0.Add(seg.P1());
    bb1.Add(vert0);
    bb1.Add(vert1);
    bb1.Add(vert2);
    Point3<ScalarType> inter;
    if (!bb0.Collide(bb1))
        return false;
  if (!vcg::IntersectionSegmentBox(bb1,seg,inter))
        return false;

    //first set both directions of ray
  vcg::Line3<ScalarType> line;
    vcg::Point3<ScalarType> dir;
    ScalarType length=seg.Length();
    dir=(seg.P1()-seg.P0());
    dir.Normalize();
  line.Set(seg.P0(),dir);
    ScalarType orig_dist;
  if(IntersectionLineTriangle<ScalarType>(line,vert0,vert1,vert2,orig_dist,a,b))
    return (orig_dist>=0 && orig_dist<=length);
  return false;
}
    /*
    * Function computing the intersection between a line and a triangle.
    * from:
    * Tomas Moller and Ben Trumbore,
    * ``Fast, Minimum Storage Ray-Triangle Intersection'',
    * journal of graphics tools, vol. 2, no. 1, pp. 21-28, 1997
    * @param[in]	line
    * @param[in]	triangle vertices
    * @param[out]=(t,u,v)	the intersection point, meaningful only if the line intersects the triangle
    *            t is the line parameter and
    *            (u,v) are the baricentric coords of the intersection point
    *
    *                 Line.Orig + t * Line.Dir = (1-u-v) * Vert0 + u * Vert1 +v * Vert2
    *
    */

template<class T>
bool IntersectionLineTriangle( const Line3<T> & line, const Point3<T> & vert0,
                  const Point3<T> & vert1, const Point3<T> & vert2,
                  T & t ,T & u, T & v)
{
    #define EPSIL 0.000001

    vcg::Point3<T> edge1, edge2, tvec, pvec, qvec;
    T det,inv_det;

   /* find vectors for two edges sharing vert0 */
   edge1 = vert1 - vert0;
   edge2 = vert2 - vert0;

   /* begin calculating determinant - also used to calculate U parameter */
   pvec =  line.Direction() ^ edge2;

   /* if determinant is near zero, line lies in plane of triangle */
   det =  edge1 *  pvec;

   /* calculate distance from vert0 to line origin */
   tvec = line.Origin() - vert0;
   inv_det = 1.0 / det;

   qvec = tvec ^ edge1;

   if (det > EPSIL)
   {
      u =  tvec * pvec ;
      if ( u < 0.0 ||  u > det)
     return 0;

      /* calculate V parameter and test bounds */
       v =  line.Direction() * qvec;
      if ( v < 0.0 ||  u +  v > det)
     return 0;

   }
   else if(det < -EPSIL)
   {
      /* calculate U parameter and test bounds */
       u =  tvec * pvec ;
      if ( u > 0.0 ||  u < det)
     return 0;

      /* calculate V parameter and test bounds */
       v =  line.Direction() * qvec  ;
      if ( v > 0.0 ||  u +  v < det)
     return 0;
   }
   else return 0;  /* line is parallell to the plane of the triangle */

    t = edge2 *  qvec  * inv_det;
   ( u) *= inv_det;
   ( v) *= inv_det;

   return 1;
}

原理请见fast minimum storage ray-triangle intersection
https://cadxfem.org/inf/Fast MinimumStorage RayTriangle Intersection.pdf

最后用meshlab验证自已的实现结果
在这里插入图片描述
在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/seamanj/article/details/86755941