typdef 定义函数的理解

      C语言 允许用户使用 typedef 关键字来定义自己习惯的数据类型名称,来替代系统默认的基本类型名称、数组类型名称、指针类型名称与用户自定义的结构型名称、共用型名称、枚举型名称等。一旦用户在程序中定义了自己的数据类型名称,就可以在该程序中用自己的数据类型名称来定义变量的类型、数组的类型、指针变量的类型与函数的类型等。

基本的用法下面有简单介绍,我们先说说如何用typedef 定义函数:

问题:在刚接触typedef void (*pfun)(void) 这个结构的时候,存在疑惑,为什么typedef后只有一“块”东西,而不是两“块”东西呢?那是谁“替代”了谁啊?我总结了一下,一方面是对typedef的概念不清晰,另一方面受了#define的影响,犯了定向思维的错误。

其实对于函数,typedef有两类自定义类型:

首先我们要先明白一个概念,函数名是不是指针?也就是说一个函数名可不可以代表一个地址?以及什么是函数类型?

经过查找,函数名就是一个指针,但是意义是不一样的,如同于数组a[],a和&a其实都是一样的。当调用一个函数时,我们都是直接用函数名调用,或者说通过指针调用。

函数类型,在我理解,就是定义了一个函数返回值类型以及参数类型。

那么:

1.tpyedef自定义函数指针类型:

  1. #include <stdio.h>

  2. typedef int (*fp_t)(char c);

  3. int f0(char c) { printf("f0, c = %c\n", c); return 0;}

  4. int f1(char c) { printf("f1, c = %c\n", c); return 1;}

  5. int main()

  6. {

  7. int ret;

  8. fp_t fp;

  9. fp = f0;

  10. ret = fp('a');

  11. fp = f1;

  12. ret = fp('x');

  13. return 0;

  14. }

运行结果:

f0, c = a
f1, c = x

2.typedef自定义函数类型:

  1. #include <stdio.h>

  2. typedef int fp_t(char c);

  3. int f0(char c) { printf("f0, c = %c\n", c); return 0;}

  4. int f1(char c) { printf("f1, c = %c\n", c); return 1;}

  5. int main()

  6. {

  7. int ret;

  8. fp_t* fp;

  9. fp = f0;

  10. ret = fp('a');

  11. fp = f1;

  12. ret = fp('x');

  13. return 0;

  14. }

运行结果:

f0, c = a
f1, c = x

总结: typedef 是用来定义一种新的类型

例如: typedef int (*type)(int ,char);
定义了一种 type的类型,函数的返回值为 int ,参数为 int 和 char ,下面就可以用 type去定义函数,就像  基本定义基本数据类型一样int X; char XX; 

基本用法:

例如,C 语言在 C99 之前并未提供布尔类型,但我们可以使用 typedef 关键字来定义一个简单的布尔类型,如下面的代码所示:

  1. typedef int BOOL;
  2. #define TRUE 1
  3. #define FALSE 0

定义好之后,就可以像使用基本类型数据一样使用它了,如下面的代码所示:

  1. BOOL bflag=TRUE;

typedef的4种用法

在实际使用中,typedef 的应用主要有如下4种。

1) 为基本数据类型定义新的类型名

也就是说,系统默认的所有基本类型都可以利用 typedef 关键字来重新定义类型名,示例代码如下所示:

  1. typedef unsigned int COUNT;

而且,我们还可以使用这种方法来定义与平台无关的类型。比如,要定义一个叫 REAL 的浮点类型,在目标平台一上,让它表示最高精度的类型,即:

  1. typedef long double REAL;

在不支持 long double 的平台二上,改为:

  1. typedef double REAL;

甚至还可以在连 double 都不支持的平台三上,改为:

  1. typedef float REAL;

这样,当跨平台移植程序时,我们只需要修改一下 typedef 的定义即可,而不用对其他源代码做任何修改。其实,标准库中广泛地使用了这个技巧,比如 size_t 在 VC++2010 的 crtdefs.h 文件中的定义如下所示:

  1. #ifndef _SIZE_T_DEFINED
  2. #ifdef _WIN64
  3. typedef unsigned __int64 size_t;
  4. #else
  5. typedef _W64 unsigned int size_t;
  6. #endif
  7. #define _SIZE_T_DEFINED
  8. #endif

2) 为自定义数据类型(结构体、共用体和枚举类型)定义简洁的类型名称

以结构体为例,下面我们定义一个名为 Point 的结构体:

  1. struct Point
  2. {
  3. double x;
  4. double y;
  5. double z;
  6. };

在调用这个结构体时,我们必须像下面的代码这样来调用这个结构体:

  1. struct Point oPoint1={100,100,0};
  2. struct Point oPoint2;

在这里,结构体 struct Point 为新的数据类型,在定义变量的时候均要向上面的调用方法一样有保留字 struct,而不能像 int 和 double 那样直接使用 Point 来定义变量。现在,我们利用 typedef 定义这个结构体,如下面的代码所示:

  1. typedef struct tagPoint
  2. {
  3. double x;
  4. double y;
  5. double z;
  6. } Point;

在上面的代码中,实际上完成了两个操作:
1、定义了一个新的结构类型,代码如下所示:

  1. struct tagPoint
  2. {
  3. double x;
  4. double y;
  5. double z;
  6. } ;

其中,struct 关键字和 tagPoint 一起构成了这个结构类型,无论是否存在 typedef 关键字,这个结构都存在。
2、使用 typedef 为这个新的结构起了一个别名,叫 Point,即:

  1. typedef struct tagPoint Point

因此,现在你就可以像 int 和 double 那样直接使用 Point 定义变量,如下面的代码所示:

  1. Point oPoint1={100,100,0};
  2. Point oPoint2;

为了加深对 typedef 的理解,我们再来看一个结构体例子,如下面的代码所示:

  1. typedef struct tagNode
  2. {
  3. char *pItem;
  4. pNode pNext;
  5. } *pNode;

从表面上看,上面的示例代码与前面的定义方法相同,所以应该没有什么问题。但是编译器却报了一个错误,为什么呢?莫非 C 语言不允许在结构中包含指向它自己的指针?
其实问题并非在于 struct 定义的本身,大家应该都知道,C 语言是允许在结构中包含指向它自己的指针的,我们可以在建立链表等数据结构的实现上看到很多这类例子。那问题在哪里呢?其实,根本问题还是在于 typedef 的应用。
在上面的代码中,新结构建立的过程中遇到了 pNext 声明,其类型是 pNode。这里要特别注意的是,pNode 表示的是该结构体的新别名。于是问题出现了,在结构体类型本身还没有建立完成的时候,编译器根本就不认识 pNode,因为这个结构体类型的新别名还不存在,所以自然就会报错。因此,我们要做一些适当的调整,比如将结构体中的 pNext 声明修改成如下方式:

  1. typedef struct tagNode
  2. {
  3. char *pItem;
  4. struct tagNode *pNext;
  5. } *pNode;

或者将 struct 与 typedef 分开定义,如下面的代码所示:

  1. typedef struct tagNode *pNode;
  2. struct tagNode
  3. {
  4. char *pItem;
  5. pNode pNext;
  6. };

在上面的代码中,我们同样使用 typedef 给一个还未完全声明的类型 tagNode 起了一个新别名。不过,虽然 C 语言编译器完全支持这种做法,但不推荐这样做。建议还是使用如下规范定义方法:

  1. struct tagNode
  2. {
  3. char *pItem;
  4. struct tagNode *pNext;
  5. };
  6. typedef struct tagNode *pNode;

3) 为数组定义简洁的类型名称

它的定义方法很简单,与为基本数据类型定义新的别名方法一样,示例代码如下所示:

  1. typedef int INT_ARRAY_100[100];
  2. INT_ARRAY_100 arr;

4) 为指针定义简洁的名称

对于指针,我们同样可以使用下面的方式来定义一个新的别名:

  1. typedef char* PCHAR;
  2. PCHAR pa;

对于上面这种简单的变量声明,使用 typedef 来定义一个新的别名或许会感觉意义不大,但在比较复杂的变量声明中,typedef 的优势马上就体现出来了,如下面的示例代码所示:

  1. int *(*a[5])(int,char*);

对于上面变量的声明,如果我们使用 typdef 来给它定义一个别名,这会非常有意义,如下面的代码所示:

  1. // PFun是我们创建的一个类型别名
  2. typedef int *(*PFun)(int,char*);
  3. // 使用定义的新类型来声明对象,等价于int*(*a[5])(int,char*);
  4. PFun a[5];

小心使用 typedef 带来的陷阱

接下来看一个简单的 typedef 使用示例,如下面的代码所示:

  1. typedef char* PCHAR;
  2. int strcmp(const PCHAR,const PCHAR);

在上面的代码中,“const PCHAR” 是否相当于 “const char*” 呢?

答案是否定的,原因很简单,typedef 是用来定义一种类型的新别名的,它不同于宏,不是简单的字符串替换。因此,“const PCHAR”中的 const 给予了整个指针本身常量性,也就是形成了常量指针“char*const(一个指向char的常量指针)”。即它实际上相当于“char*const”,而不是“const char*(指向常量 char 的指针)”。当然,要想让 const PCHAR 相当于 const char* 也很容易,如下面的代码所示:

  1. typedef const char* PCHAR;
  2. int strcmp(PCHAR, PCHAR);

其实,无论什么时候,只要为指针声明 typedef,那么就应该在最终的 typedef 名称中加一个 const,以使得该指针本身是常量。
还需要特别注意的是,虽然 typedef 并不真正影响对象的存储特性,但在语法上它还是一个存储类的关键字,就像 auto、extern、static 和 register 等关键字一样。因此,像下面这种声明方式是不可行的:

  1. typedef static int INT_STATIC;

不可行的原因是不能声明多个存储类关键字,由于 typedef 已经占据了存储类关键字的位置,因此,在 typedef 声明中就不能够再使用 static 或任何其他存储类关键字了。当然,编译器也会报错,如在 VC++2010 中的报错信息为“无法指定多个存储类”。

猜你喜欢

转载自blog.csdn.net/fly_sky_share/article/details/89975522