[学习笔记] CNN与RNN方法结合

CNN与RNN的结合

问题

前几天学习了RNN的推导以及代码,那么问题来了,能不能把CNN和RNN结合起来,我们通过CNN提取的特征,能不能也将其看成一个序列呢?答案是可以的。

但是我觉得一般直接提取的特征喂给哦RNN训练意义是不大的,因为RNN擅长处理的是不定长的序列,也就是说,seq size是不确定的,但是一般图像特征的神经元数量都是定的,这个时候再接个rnn说实话意义不大,除非设计一种结构可以让网络不定长输出。(我的一个简单想法就是再设计一条之路去学习一个神经元权重mask,按照规则过滤掉一些神经元,然后丢进rnn或者lstm训练)

如何实现呢

import torch
import torch.nn as nn
from torchsummary import summary
from torchvision import datasets,transforms
import torch.optim as optim
from tqdm import tqdm
class Model(nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        
        self.feature_extractor = nn.Sequential(
            nn.Conv2d(1,16,kernel_size = 3,stride=2),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.Conv2d(16,64,kernel_size = 3,stride=2),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64,128,kernel_size = 3,stride=2),
            nn.BatchNorm2d(128),
            nn.ReLU(),
        )
        self.rnn = nn.RNN(128,256,2) # input_size,output_size,hidden_num
        self.h0 = torch.zeros(2,32,256) # 层数 batchsize hidden_dim
        self.predictor = nn.Linear(4*256,10)
    def forward(self,x):
        x = self.feature_extractor(x) # (-1,128,2,2),4个神经元,128维度
        x,ht = self.rnn(x.view(4,-1,128),self.h0) # (h*w,batch_size,hidden_dim)
        #self.h0 = ht
        x = self.predictor(x.view(-1,256*4))
        return x

if __name__ == "__main__":
    model = Model()
    #summary(model,(1,28,28),device = "cpu")
    loss_fn = nn.CrossEntropyLoss()
    train_dataset = datasets.MNIST(root="./data/",train = True,transform = transforms.ToTensor(),download = True)
    test_dataset = datasets.MNIST(root="./data/",train = False,transform = transforms.ToTensor(),download = True)
    
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=32,
                                           shuffle=True)

    test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                            batch_size=128,
                                            shuffle=False)
    optimizer = optim.Adam(model.parameters(),lr = 1e-3)
    print(len(train_loader))
    for epoch in range(100):
        epoch_loss = 0.
        for x,target in train_loader:
            #print(x.size())
            y = model(x)
            loss = loss_fn(y,target)
            epoch_loss += loss.item()
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
        print("epoch : {} and loss is : {}".format(epoch +1,epoch_loss))
    torch.save(model.state_dict(),"rnn_cnn.pth")

上面代码可以看出我已经规定了RNN输入神经元的个数,所以肯定是定长的输入,我训练之后是可以收敛的。

对于不定长,其实还是没办法改变每个batch的seq len,因为规定的一定是最长的seq len,所以没办法做到真正的不定长。所以我能做的就是通过支路学习一个权重作用到原来的feature上去,这个权重是0-1权重,其实这样就可以达到效果了。

import torch
import torch.nn as nn
from torchsummary import summary
from torchvision import datasets,transforms
import torch.optim as optim
import torch.nn.functional as F
from tqdm import tqdm
class Model(nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        
        self.feature_extractor = nn.Sequential(
            nn.Conv2d(1,16,kernel_size = 3,stride=2),
            nn.BatchNorm2d(16),
            nn.ReLU6(),
            nn.Conv2d(16,64,kernel_size = 3,stride=2),
            nn.BatchNorm2d(64),
            nn.ReLU6(),
            nn.Conv2d(64,128,kernel_size = 3,stride=2),
            nn.BatchNorm2d(128),
            nn.ReLU6(),
        )
        self.attn = nn.Conv2d(128,1,kernel_size = 1)
        self.rnn = nn.RNN(128,256,2) # input_size,output_size,hidden_num
        
        self.h0 = torch.zeros(2,32,256) # 层数 batchsize hidden_dim
        self.predictor = nn.Linear(4*256,10)
    def forward(self,x):
        x = self.feature_extractor(x) # (-1,128,2,2),4个神经元,128维度
        attn = F.relu(self.attn(x)) # (-1,1,2,2) -> (-1,4)
        x = x * attn
        #print(x.size()) 
        x,ht = self.rnn(x.view(4,-1,128),self.h0) # (h*w,batch_size,hidden_dim)
        #self.h0 = ht
        x = self.predictor(x.view(-1,256*4))
        return x

if __name__ == "__main__":
    model = Model()
    #summary(model,(1,28,28),device = "cpu")
    #exit()
    loss_fn = nn.CrossEntropyLoss()
    train_dataset = datasets.MNIST(root="./data/",train = True,transform = transforms.ToTensor(),download = True)
    test_dataset = datasets.MNIST(root="./data/",train = False,transform = transforms.ToTensor(),download = True)
    
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=32,
                                           shuffle=True)

    test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                            batch_size=128,
                                            shuffle=False)
    optimizer = optim.Adam(model.parameters(),lr = 1e-3)
    print(len(train_loader))
    for epoch in range(100):
        epoch_loss = 0.
        for x,target in train_loader:
            #print(x.size())

            y = model(x)
            
            loss = loss_fn(y,target)
            epoch_loss += loss.item()
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
        print("epoch : {} and loss is : {}".format(epoch +1,epoch_loss))
    torch.save(model.state_dict(),"rnn_cnn.pth")

我自己训练了一下,后者要比前者收敛的快的多。

猜你喜欢

转载自www.cnblogs.com/aoru45/p/11576023.html