每日一题_191118

已知\(a,b\in\mathbb{R}\),\(a+b=4\),则\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\)的最大值为\(\underline{\qquad\qquad}\).
解析:
记待求表达式为\(M\),设\[ t=1-ab=1-a(4-a),a\in\mathbb{R}.\]\(t\)的取值范围为\([-3,+\infty)\).则\[ \begin{split} M&=\dfrac{b^2+1+a^2+1}{(a^2+1)(b^2+1)}\\ &=\dfrac{(a+b)^2+2(1-ab)}{(a+b)^2+(ab-1)^2}\\ &=\dfrac{16+2t}{16+t^2}\\ &=2\cdot \dfrac{8+t}{16+\left[(8+t)-8\right]^2}\\ &=\dfrac{2}{(8+t)+\dfrac{80}{8+t}-16}\\ &\leqslant \dfrac{2}{2\sqrt{80}-16}\\ &=\dfrac{\sqrt{5}}{4}+\dfrac{1}{2}. \end{split} \]
上述不等式当且仅当\(8+t=\dfrac{80}{8+t}\),即\(t=4\sqrt{5}-8\)时取等,因此所求表达式\(M\)的最大值为\(\dfrac{\sqrt{5}}{4}+\dfrac{1}{2}\).

猜你喜欢

转载自www.cnblogs.com/Math521/p/11871535.html