PCB抑制干扰设计原则

辐射产生
辐射是由电流而非电压引起的。静态电荷产生静电场,恒定电流产生磁场,时变电流既产生电场又产生磁场。任何电路中都存在共模电流和差模电流,差模信号携带数据或有用信号,共模信号是差模模式的负面效果。
差模电流
大小相等,方向(相位)相反。由于走线的分布,电容、电感、信号走线阻抗不连续,以及信号回流路径流过了意料之外的通路等,差模电流会转换成共模电流。
共模电流
大小不一定相等,方向(相位)相同。设备对外的干扰多以共模为主,差模干扰也存在,但共模干扰强度常常比差模大几个数量级。外来的干扰也多以共模干扰为主,共模干扰本身一般不会对设备产生危害,但如果共模干扰转变为差模干扰,就严重了,因为有用信号都是差模信号。差模电流的磁场主要集中在差模电流构成的回路面积内,而回路面积之外,磁力线会相互抵消;共模电流的磁场在回路面积之外,共模电流产生的磁场方向相同。PCB的很多EMC设计都遵循以上理论。

在PCB板上抑制干扰的途径有:
1、减小差模信号回路面积。
2、减小高频噪声回流(滤波、隔离及匹配)。
3、减小共模电压(接地设计)。
PCB设计原则总结
1:PCB时钟频率超过5MHz或信号上升时间小于5ns,一般需要使用多层板设计。
原因:采用多层板设计,信号回路面积能够得到很好的控制。

2:对于多层板,关键布线层(时钟线、总线、接口信号线、射频线、复位信号线、片选信号线以及各种控制信号线等所在层)应与完整地平面相邻,优选两地平面之间。
原因:关键信号线一般都是强辐射或极其敏感的信号线,靠近地平面布线能够使其信号回路面积减小,减小其辐射强度或提高抗干扰能力。

3:对于单层板,关键信号线两侧应该包地处理。
原因:关键信号两侧包地,一方面可以减小信号回路面积,另外还可以防止信号线与其他信号线之间的串扰。

4:对于双层板,关键信号线的投影平面上有大面积铺地,或者与单面板一样包地打孔处理。
原因:与多层板关键信号靠近地平面相同。

5:多层

猜你喜欢

转载自blog.csdn.net/weixin_43839976/article/details/103728197