例题:随机游走

  • X t X_t 为一随机游走序列: X t = X t 1 + ε t X_t=X_{t-1}+\varepsilon_t , X 0 = 0 X_0=0 。求 C o r r ( X t , X t + k ) Corr(X_t,X_{t+k})
    C o r r ( X t , X t + k ) = C o v ( X t , X t + k ) V a r ( X t ) V a r ( X t + k ) {\rm Corr}(X_t,X_{t+k})=\frac{{\rm Cov}(X_t,X_{t+k})}{\sqrt{{\rm Var}(X_t){\rm Var}(X_{t+k})}}
    其中 C o v ( X t , X t + k ) = E ( X t X t + k ) E ( X t ) E ( X t + k ) {\rm Cov}(X_t,X_{t+k})=E(X_tX_{t+k})-E(X_t)E(X_{t+k})
    易知
    X t = ε 1 + . . . + ε t X t + k = ε 1 + . . . + ε t + k X_t=\varepsilon_1+...+\varepsilon_t \\ X_{t+k}=\varepsilon_1+...+\varepsilon_{t+k}
    那么 E ( X t ) = E ( X t + k ) = 0 E(X_t)=E(X_{t+k})=0 。而 X t X t + k X_tX_{t+k} 的平方项有 ε 1 2 + . . . + ε t 2 \varepsilon_1^2+...+\varepsilon_t^2 ,其余都是 ε t \varepsilon_t 的交叉项(期望为0)。
    那么 C o v ( X t , X t + k ) = t σ ε 2 {\rm Cov}(X_t,X_{t+k})=t{\sigma_{\varepsilon}^2}
    V a r ( X t ) = t σ ε 2 , V a r ( X t + k ) = ( t + k ) σ ε 2 {\rm Var}(X_t)=t{\sigma_{\varepsilon}^2},{\rm Var}(X_{t+k})=(t+k){\sigma_{\varepsilon}^2}
    所以
    C o r r ( X t , X t + k ) = C o v ( X t , X t + k ) V a r ( X t ) V a r ( X t + k ) = t σ ε 2 t σ ε 2 ( t + k ) σ ε 2 = t t + k {\rm Corr}(X_t,X_{t+k}) =\frac{{\rm Cov}(X_t,X_{t+k})}{\sqrt{{\rm Var}(X_t){\rm Var}(X_{t+k})}} \\=\frac{t{\sigma_{\varepsilon}^2}}{\sqrt{t{\sigma_{\varepsilon}^2}(t+k){\sigma_{\varepsilon}^2}}}=\sqrt{\frac{t}{t+k}}
发布了24 篇原创文章 · 获赞 5 · 访问量 560

猜你喜欢

转载自blog.csdn.net/weixin_39174856/article/details/104068807