23模型保存与加载

一、序列化与反序列化

在这里插入图片描述
序列化与反序列化:
数据在内存与硬盘之间的转换关系

序列化:
模型在内存中是以对象的形式存储的,但是在内存中的对象不能长久保存,所以需要将其保存在硬盘中,而在硬盘中,数据是以二进制数保存的,即二进制序列,所以,序列化是指将内存中的某一个对象存到硬盘当中,以二进制序列的形式存储下来

反序列化:
将存储的二进制序列转换到内存中的对象形式,从而对该对象进行使用

主要目的:
对模型和数据进行长久的保存,以及方便使用

在这里插入图片描述

二、模型保存与加载的两种方式

2.1 保存和加载整个Module

保存模型:

torch.save(net, path)

说明:
将整个模型保存下来,不关心模型中的具体结构

缺陷:
保存比较耗时,官网不推荐使用

加载模型:

net_load = torch.load(path_model)

说明:
根据模型所保存的路径path_model,加载已保存的模型

代码示例:
模型的保存:

# -*- coding: utf-8 -*-
import torch
import numpy as np
import torch.nn as nn
from tools.common_tools import set_seed


class LeNet2(nn.Module):
    def __init__(self, classes):
        super(LeNet2, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 6, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(6, 16, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2)
        )
        self.classifier = nn.Sequential(
            nn.Linear(16*5*5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size()[0], -1)
        x = self.classifier(x)
        return x

    def initialize(self):
        for p in self.parameters():
            p.data.fill_(20191104)


net = LeNet2(classes=2019)

# "训练"
print("训练前: ", net.features[0].weight[0, ...])
net.initialize()
print("训练后: ", net.features[0].weight[0, ...])

path_model = "./model.pkl"
path_state_dict = "./model_state_dict.pkl"

# 保存整个模型
torch.save(net, path_model)

模型的加载:

# -*- coding: utf-8 -*-

import torch
import numpy as np
import torch.nn as nn
from tools.common_tools import set_seed


class LeNet2(nn.Module):
    def __init__(self, classes):
        super(LeNet2, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 6, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(6, 16, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2)
        )
        self.classifier = nn.Sequential(
            nn.Linear(16*5*5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size()[0], -1)
        x = self.classifier(x)
        return x

    def initialize(self):
        for p in self.parameters():
            p.data.fill_(20191104)


# ================================== load net ===========================
# flag = 1
flag = 0
if flag:

    path_model = "./model.pkl"
    net_load = torch.load(path_model)

    print(net_load)

2.2 保存和加载模型参数

保存模型参数:

state_dict = net.state_dict()
torch.save(state_dict, path)

说明:

  • state_dict()方法会将模型中的可学习参数以字典的形式返回
  • torch.save()可学习参数按照指定的路径返回

加载模型参数:

state_dict_load = torch.load(path_state_dict)
net_new = LeNet2(classes=2019)
net_new.load_state_dict(state_dict_load)

说明:

  • 先根据已保存的模型参数地址path_state_dict加载模型参数
  • 构建新的网络模型
  • 使用load_state_dict方法,将得到的模型参数加载到网络模型中

在这里插入图片描述
由上图可知,在nn.Module模块中,主要的就是八个有序字典,同时还有一些在__init__()函数中构造的别的属性,保存模型是为了后面方便使用,而需要保存的就是nn.module中的可学习参数,将模型参数保存下来,后面构建新的模型,就能加载这些参数进行使用

代码示例:
保存模型参数:

# -*- coding: utf-8 -*-
import torch
import numpy as np
import torch.nn as nn
from tools.common_tools import set_seed


class LeNet2(nn.Module):
    def __init__(self, classes):
        super(LeNet2, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 6, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(6, 16, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2)
        )
        self.classifier = nn.Sequential(
            nn.Linear(16*5*5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size()[0], -1)
        x = self.classifier(x)
        return x

    def initialize(self):
        for p in self.parameters():
            p.data.fill_(20191104)


net = LeNet2(classes=2019)

# "训练"
print("训练前: ", net.features[0].weight[0, ...])
net.initialize()
print("训练后: ", net.features[0].weight[0, ...])

path_model = "./model.pkl"
path_state_dict = "./model_state_dict.pkl"

# 保存模型参数
net_state_dict = net.state_dict()
torch.save(net_state_dict, path_state_dict)

加载模型参数:

# -*- coding: utf-8 -*-

import torch
import numpy as np
import torch.nn as nn
from tools.common_tools import set_seed


class LeNet2(nn.Module):
    def __init__(self, classes):
        super(LeNet2, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 6, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(6, 16, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2)
        )
        self.classifier = nn.Sequential(
            nn.Linear(16*5*5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size()[0], -1)
        x = self.classifier(x)
        return x

    def initialize(self):
        for p in self.parameters():
            p.data.fill_(20191104)

# ================================== load state_dict ===========================

flag = 1
# flag = 0
if flag:

    path_state_dict = "./model_state_dict.pkl"
    state_dict_load = torch.load(path_state_dict)

    print(state_dict_load.keys())

# ================================== update state_dict ===========================
flag = 1
# flag = 0
if flag:

    net_new = LeNet2(classes=2019)

    print("加载前: ", net_new.features[0].weight[0, ...])
    net_new.load_state_dict(state_dict_load)
    print("加载后: ", net_new.features[0].weight[0, ...])

三、模型断点续训练

在这里插入图片描述
断点续训练:
解决因某种意外导致模型训练终止而需要重新训练重复训练的问题

待保存数据: 主要是模型数据和优化器数据

  • 模型中:权值,可学习参数

  • 优化器中:一些缓存数据,如momentum使用到之前的一些状态信息用于指数加权平均计算

3.1 断点保存

	checkpoint = {"model_state_dict": net.state_dict(),
	              "optimizer_state_dict": optimizer.state_dict(),
	              "epoch": epoch}
	path_checkpoint = "./checkpoint_{}_epoch.pkl".format(epoch)
	torch.save(checkpoint, path_checkpoint)

保存的信息:

  • net.state_dict()返回模型中的可学习参数,保存可学习参数
  • optimizer.state_dict()返回优化器中的数据,保存优化器数据
  • epoch保存训练的阶段

说明:

  • 设置checkpoint保存相关数据
  • 设置checkpoint的保存路径
  • 使用torch.save方法进行保存

3.2 断点恢复

path_checkpoint = "./checkpoint_4_epoch.pkl"
checkpoint = torch.load(path_checkpoint)

net.load_state_dict(checkpoint['model_state_dict'])

optimizer.load_state_dict(checkpoint['optimizer_state_dict'])

start_epoch = checkpoint['epoch']

scheduler.last_epoch = start_epoch

说明:

  • 根据保存的checkpoint路径加载保存的数据
  • 将checkpoint中的模型参数和优化器参数分别加载到模型和优化器中
  • 设置续训练的epoch

注意:
学习率优化策略,即torch.optim.lr_scheduler也需要恢复epoch

代码示例:

模拟训练意外中断:

# -*- coding: utf-8 -*-

import os
import random
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torch.optim as optim
from PIL import Image
from matplotlib import pyplot as plt
from model.lenet import LeNet
from tools.my_dataset import RMBDataset
from tools.common_tools import set_seed
import torchvision


set_seed(1)  # 设置随机种子
rmb_label = {"1": 0, "100": 1}

# 参数设置
checkpoint_interval = 5
MAX_EPOCH = 10
BATCH_SIZE = 16
LR = 0.01
log_interval = 10
val_interval = 1


# ============================ step 1/5 数据 ============================

split_dir = os.path.join("..", "..", "data", "rmb_split")
train_dir = os.path.join(split_dir, "train")
valid_dir = os.path.join(split_dir, "valid")

norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]

train_transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.RandomCrop(32, padding=4),
    transforms.RandomGrayscale(p=0.8),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

valid_transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

# 构建MyDataset实例
train_data = RMBDataset(data_dir=train_dir, transform=train_transform)
valid_data = RMBDataset(data_dir=valid_dir, transform=valid_transform)

# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)

# ============================ step 2/5 模型 ============================

net = LeNet(classes=2)
net.initialize_weights()

# ============================ step 3/5 损失函数 ============================
criterion = nn.CrossEntropyLoss()                                                   # 选择损失函数

# ============================ step 4/5 优化器 ============================
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9)                        # 选择优化器
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=6, gamma=0.1)     # 设置学习率下降策略

# ============================ step 5/5 训练 ============================
train_curve = list()
valid_curve = list()

start_epoch = -1
for epoch in range(start_epoch+1, MAX_EPOCH):

    loss_mean = 0.
    correct = 0.
    total = 0.

    net.train()
    for i, data in enumerate(train_loader):

        # forward
        inputs, labels = data
        outputs = net(inputs)

        # backward
        optimizer.zero_grad()
        loss = criterion(outputs, labels)
        loss.backward()

        # update weights
        optimizer.step()

        # 统计分类情况
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).squeeze().sum().numpy()

        # 打印训练信息
        loss_mean += loss.item()
        train_curve.append(loss.item())
        if (i+1) % log_interval == 0:
            loss_mean = loss_mean / log_interval
            print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, i+1, len(train_loader), loss_mean, correct / total))
            loss_mean = 0.

    scheduler.step()  # 更新学习率

    if (epoch+1) % checkpoint_interval == 0:

        checkpoint = {"model_state_dict": net.state_dict(),
                      "optimizer_state_dict": optimizer.state_dict(),
                      "epoch": epoch}
        path_checkpoint = "./checkpoint_{}_epoch.pkl".format(epoch)
        torch.save(checkpoint, path_checkpoint)

    if epoch > 5:
        print("训练意外中断...")
        break

    # validate the model
    if (epoch+1) % val_interval == 0:

        correct_val = 0.
        total_val = 0.
        loss_val = 0.
        net.eval()
        with torch.no_grad():
            for j, data in enumerate(valid_loader):
                inputs, labels = data
                outputs = net(inputs)
                loss = criterion(outputs, labels)

                _, predicted = torch.max(outputs.data, 1)
                total_val += labels.size(0)
                correct_val += (predicted == labels).squeeze().sum().numpy()

                loss_val += loss.item()

            valid_curve.append(loss.item())
            print("Valid:\t Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, j+1, len(valid_loader), loss_val/len(valid_loader), correct / total))


train_x = range(len(train_curve))
train_y = train_curve

train_iters = len(train_loader)
valid_x = np.arange(1, len(valid_curve)+1) * train_iters*val_interval # 由于valid中记录的是epochloss,需要对记录点进行转换到iterations
valid_y = valid_curve

plt.plot(train_x, train_y, label='Train')
plt.plot(valid_x, valid_y, label='Valid')

plt.legend(loc='upper right')
plt.ylabel('loss value')
plt.xlabel('Iteration')
plt.show()

在这里插入图片描述

根据断点恢复训练:

# -*- coding: utf-8 -*-

import os
import random
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torch.optim as optim
from PIL import Image
from matplotlib import pyplot as plt
from model.lenet import LeNet
from tools.my_dataset import RMBDataset
from tools.common_tools import set_seed
import torchvision


set_seed(1)  # 设置随机种子
rmb_label = {"1": 0, "100": 1}

# 参数设置
checkpoint_interval = 5
MAX_EPOCH = 10
BATCH_SIZE = 16
LR = 0.01
log_interval = 10
val_interval = 1


# ============================ step 1/5 数据 ============================

split_dir = os.path.join("..", "..", "data", "rmb_split")
train_dir = os.path.join(split_dir, "train")
valid_dir = os.path.join(split_dir, "valid")

norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]

train_transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.RandomCrop(32, padding=4),
    transforms.RandomGrayscale(p=0.8),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

valid_transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

# 构建MyDataset实例
train_data = RMBDataset(data_dir=train_dir, transform=train_transform)
valid_data = RMBDataset(data_dir=valid_dir, transform=valid_transform)

# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)

# ============================ step 2/5 模型 ============================

net = LeNet(classes=2)
net.initialize_weights()

# ============================ step 3/5 损失函数 ============================
criterion = nn.CrossEntropyLoss()                                                   # 选择损失函数

# ============================ step 4/5 优化器 ============================
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9)                        # 选择优化器
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=6, gamma=0.1)     # 设置学习率下降策略


# ============================ step 5+/5 断点恢复 ============================

path_checkpoint = "./checkpoint_4_epoch.pkl"
checkpoint = torch.load(path_checkpoint)

net.load_state_dict(checkpoint['model_state_dict'])

optimizer.load_state_dict(checkpoint['optimizer_state_dict'])

start_epoch = checkpoint['epoch']

scheduler.last_epoch = start_epoch

# ============================ step 5/5 训练 ============================
train_curve = list()
valid_curve = list()

for epoch in range(start_epoch + 1, MAX_EPOCH):

    loss_mean = 0.
    correct = 0.
    total = 0.

    net.train()
    for i, data in enumerate(train_loader):

        # forward
        inputs, labels = data
        outputs = net(inputs)

        # backward
        optimizer.zero_grad()
        loss = criterion(outputs, labels)
        loss.backward()

        # update weights
        optimizer.step()

        # 统计分类情况
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).squeeze().sum().numpy()

        # 打印训练信息
        loss_mean += loss.item()
        train_curve.append(loss.item())
        if (i+1) % log_interval == 0:
            loss_mean = loss_mean / log_interval
            print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, i+1, len(train_loader), loss_mean, correct / total))
            loss_mean = 0.

    scheduler.step()  # 更新学习率

    if (epoch+1) % checkpoint_interval == 0:

        checkpoint = {"model_state_dict": net.state_dict(),
                      "optimizer_state_dic": optimizer.state_dict(),
                      "loss": loss,
                      "epoch": epoch}
        path_checkpoint = "./checkpint_{}_epoch.pkl".format(epoch)
        torch.save(checkpoint, path_checkpoint)

    # if epoch > 5:
    #     print("训练意外中断...")
    #     break

    # validate the model
    if (epoch+1) % val_interval == 0:

        correct_val = 0.
        total_val = 0.
        loss_val = 0.
        net.eval()
        with torch.no_grad():
            for j, data in enumerate(valid_loader):
                inputs, labels = data
                outputs = net(inputs)
                loss = criterion(outputs, labels)

                _, predicted = torch.max(outputs.data, 1)
                total_val += labels.size(0)
                correct_val += (predicted == labels).squeeze().sum().numpy()

                loss_val += loss.item()

            valid_curve.append(loss.item())
            print("Valid:\t Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, j+1, len(valid_loader), loss_val/len(valid_loader), correct / total))


train_x = range(len(train_curve))
train_y = train_curve

train_iters = len(train_loader)
valid_x = np.arange(1, len(valid_curve)+1) * train_iters*val_interval # 由于valid中记录的是epochloss,需要对记录点进行转换到iterations
valid_y = valid_curve

plt.plot(train_x, train_y, label='Train')
plt.plot(valid_x, valid_y, label='Valid')

plt.legend(loc='upper right')
plt.ylabel('loss value')
plt.xlabel('Iteration')
plt.show()

在这里插入图片描述

发布了105 篇原创文章 · 获赞 9 · 访问量 7800

猜你喜欢

转载自blog.csdn.net/qq_36825778/article/details/104209625