C# 深入理解按位异或运算符

• 2257
[csharp] view plain copy
1. private void button1_Click(object sender, EventArgs e)
2. {
3. Font oldFont = this.textBox1.Font;
4. this.textBox1.Font = new Font(oldFont, oldFont.Style ^ FontStyle.Bold);
5. }

参与运算的两个值,如果两个相应bit位相同,则结果为0,否则为1。
即:
   0^0 = 0,
1^0 = 1,
0^1 = 1,
1^1 = 0
按位异或的3个特点:
(1) 0^0=0,0^1=1 0异或任何数=任何数
(2) 1^0=1,1^1=0 1异或任何数-任何数取反
(3) 任何数异或自己=把自己置0
按位异或的几个常见用途:
(1) 使某些特定的位翻转
例如对数10100001的第2位和第3位翻转,则可以将该数与00000110进行按位异或运算。
      10100001^00000110 = 10100111
(2) 实现两个值的交换,而不必使用临时变量。
例如交换两个整数a=10100001,b=00000110的值,可通过下列语句实现:
    a = a^b;   //a=10100111
    b = b^a;   //b=10100001
    a = a^b;   //a=00000110
(3) 在汇编语言中经常用于将变量置零:
xor a,a
(4) 快速判断两个值是否相等
举例1: 判断两个整数a,b是否相等,则可通过下列语句实现:
return ((a ^ b) == 0)

举例2: Linux中最初的ipv6_addr_equal()函数的实现如下:
static inline int ipv6_addr_equal(const struct in6_addr *a1, const struct in6_addr *a2)
{
    return (a1->s6_addr32[0] == a2->s6_addr32[0] &&
        a1->s6_addr32[1] == a2->s6_addr32[1] &&
        a1->s6_addr32[2] == a2->s6_addr32[2] &&
        a1->s6_addr32[3] == a2->s6_addr32[3]);
}

可以利用按位异或实现快速比较, 最新的实现已经修改为:
static inline int ipv6_addr_equal(const struct in6_addr *a1, const struct in6_addr *a2)
{
return (((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
    (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
    (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
    (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0);
}

5 应用通式:
对两个表达式执行按位异或。
result = expression1 ^ expression2
参数
result
任何变量。
expression1
任何表达式。
expression2
任何表达式。
说明
^ 运算符查看两个表达式的二进制表示法的值,并执行按位异或。该操作的结果如下所示:
0101 (expression1)1100 (expression2)—-1001 (结果)当且仅当只有一个表达式的某位上为 1 时,结果的该位才为 1。否则结果的该位为 0。
只能用于整数

下面这个程序用到了“按位异或”运算符:
class E
{ public static void main(String args[ ])
{
char a1=’十’ , a2=’点’ , a3=’进’ , a4=’攻’ ;
char secret=’8’ ;
a1=(char) (a1^secret);
a2=(char) (a2^secret);
a3=(char) (a3^secret);
a4=(char) (a4^secret);
System.out.println(“密文:”+a1+a2+a3+a4);
a1=(char) (a1^secret);
a2=(char) (a2^secret);
a3=(char) (a3^secret);
a4=(char) (a4^secret);
System.out.println(“原文:”+a1+a2+a3+a4);
}
}
就是加密啊解密啊
char类型,也就是字符类型实际上就是整形,就是数字.
计算机里面所有的信息都是整数,所有的整数都可以表示成二进制的,实际上计算机只认识二进制的.
位运算就是二进制整数运算啦.
两个数按位异或意思就是从个位开始,一位一位的比.
如果两个数相应的位上一样,结果就是0,不一样就是1
所以111^101=010
那加密的过程就是逐个字符跟那个secret字符异或运算.
解密的过程就是密文再跟同一个字符异或运算
010^101=111
至于为什么密文再次异或就变原文了,这个稍微想下就知道了..

====================================
& 按位与
| 按位或
^ 按位异或
1. 按位与运算 按位与运算符”&”是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&5可写算式如下: 00001001 (9的二进制补码)&00000101 (5的二进制补码) 00000001 (1的二进制补码)可见9&5=1。
按位与运算通常用来对某些位清0或保留某些位。例如把a 的高八位清 0 , 保留低八位, 可作 a&255 运算 ( 255 的二进制数为0000000011111111)。
main(){
int a=9,b=5,c;
c=a&b;
printf(“a=%d/nb=%d/nc=%d/n”,a,b,c);
}
2. 按位或运算 按位或运算符“|”是双目运算符。其功能是参与运算的两数各对应的二进位相或。只要对应的二个二进位有一个为1时,结果位就为1。参与运算的两个数均以补码出现。
例如:9|5可写算式如下: 00001001|00000101
00001101 (十进制为13)可见9|5=13
main(){
int a=9,b=5,c;
c=a|b;
printf(“a=%d/nb=%d/nc=%d/n”,a,b,c);
}
3. 按位异或运算 按位异或运算符“^”是双目运算符。其功能是参与运算的两数各对应的二进位相异或,当两对应的二进位相异时,结果为1。参与运算数仍以补码出现,例如9^5可写成算式如下: 00001001^00000101 00001100 (十进制为12)
main(){
int a=9;
a=a^15;
printf(“a=%d/n”,a);
}

进行位运算,是不需要转化成二进制的。
CPU在运算的时候,内部把所有数据都看成二进制。Convert 看类名就知道,是提供一个转换函数的。
位运算只能在 byte, char, short, ushort, int, uint, long, ulong 等类型上进行运算。
当然 Enum 类型,也是基于这些类型的,也可以用位运算。
一些例子:
int a = 8;
int b = a << 2; //a 左移2位
int c = b >> 1; //b 右移1位
int d = a ^ b; //a 和 b 按位异或
int e = c & d; //c 和 d 按位与
int f = d | e; //d 和 e 按位或
int g = ~f; //f 按位取反

1
2
3
4
5
6
7
8
9
10
11
12
13 右移运算符 (>>) 将第一个操作数向右移动第二个操作数所指定的位数。
如果第一个操作数为 int 或 uint(32 位数),则移位数由第二个操作数的低五位给出(第二个操作数 & 0x1f)。
如果第一个操作数为 long 或 ulong(64 位数),则移位数由第二个操作数的低六位给出(第二个操作数 & 0x3f)。
如果第一个操作数为 int 或 long,则右移位是算术移位(高序空位设置为符号位)。如果第一个操作数为 uint 或 ulong 类型,则右移位是逻辑移位(高位填充 0)。
用户定义的类型可重载 >> 运算符;第一个操作数的类型必须为用户定义的类型,第二个操作数的类型必须为 int。有关更多信息,请参见 operator。重载二元运算符时,也会隐式重载相应的赋值运算符(如果有)。
具体的使用方法的话:
int i = 8;
Console.WriteLine(i >> 3);
/*
Output:
1
向右移动3位,相当于除以8
*/

  1. 转成二进制主要有以下几种:正整数转二进制,负整数转二进制,小数转二进制;
    1、 正整数转成二进制。要点一定一定要记住哈:除二取余,然后倒序排列,高位补零。
    也就是说,将正的十进制数除以二,得到的商再除以二,依次类推知道商为零或一时为止,然后在旁边标出各步的余数,最后倒着写出来,高位补零就OK咧。哎呀,还是举例说明吧,比如42转换为二进制,如图1所示操作。

  2. 42除以2得到的余数分别为010101,然后咱们倒着排一下,42所对应二进制就是101010.如图2所示更直观的表达。

  3. 计算机内部表示数的字节单位是定长的,如8位,16位,或32位。所以,位数不够时,高位补零,所说,如图3所示,42转换成二进制以后就是。00101010,也即规范的写法为(42)10=(00101010)2.赶紧记住吧。

  4. 2、 负整数转换成二进制
    方法:先是将对应的正整数转换成二进制后,对二进制取反,然后对结果再加一。还以42为例,负整数就是-42,如图4所示为方法解释。最后即为:(-42)10=(11010110)2.

  5. 3、 小数转换为二进制的方法:对小数点以后的数乘以2,有一个结果吧,取结果的整数部分(不是1就是0喽),然后再用小数部分再乘以2,再取结果的整数部分……以此类推,直到小数部分为0或者位数已经够了就OK了。然后把取的整数部分按先后次序排列就OK了,就构成了二进制小数部分的序列,举个例子吧,比如0.125,如图5所示。

  6. 如果小数的整数部分有大于0的整数时该如何转换呢?如以上整数转换成二进制,小数转换成二进制,然后加在一起就OK了,如图6所示。

  7. 4、 整数二进制转换为十进制:首先将二进制数补齐位数,首位如果是0就代表是正整数,如果首位是1则代表是负整数。
    先看首位是0的正整数,补齐位数以后,将二进制中的位数分别将下边对应的值相乘,然后相加得到的就为十进制,比如1010转换为十进制,方法如图7所示。

  8. 5、若二进制补足位数后首位为1时,就需要先取反再换算:例如,11101011,首位为1,那么就先取反吧:-00010100,然后算一下10100对应的十进制为20,所以对应的十进制为-20,方法如图8所示。

  9. 6、将有小数的二进制转换为十进制时:例如0.1101转换为十进制的方法:将二进制中的四位数分别于下边(如图9所示)对应的值相乘后相加得到的值即为换算后的十进制。

参与运算的两个值,如果两个相应bit位相同,则结果为0,否则为1。
即:
  0^0 = 0,
1^0 = 1,
0^1 = 1,
1^1 = 0
按位异或的3个特点:
(1) 0^0=0,0^1=1 0异或任何数=任何数
(2) 1^0=1,1^1=0 1异或任何数-任何数取反
(3) 任何数异或自己=把自己置0
按位异或的几个常见用途:
(1) 使某些特定的位翻转
例如对数10100001的第2位和第3位翻转,则可以将该数与00000110进行按位异或运算。
      10100001^00000110 = 10100111
(2) 实现两个值的交换,而不必使用临时变量。
例如交换两个整数a=10100001,b=00000110的值,可通过下列语句实现:
    a = a^b;   //a=10100111
    b = b^a;   //b=10100001
    a = a^b;   //a=00000110
(3) 在汇编语言中经常用于将变量置零:
xor a,a
(4) 快速判断两个值是否相等
举例1: 判断两个整数a,b是否相等,则可通过下列语句实现:
return ((a ^ b) == 0)

举例2: Linux中最初的ipv6_addr_equal()函数的实现如下:
static inline int ipv6_addr_equal(const struct in6_addr *a1, const struct in6_addr *a2)
{
    return (a1->s6_addr32[0] == a2->s6_addr32[0] &&
        a1->s6_addr32[1] == a2->s6_addr32[1] &&
        a1->s6_addr32[2] == a2->s6_addr32[2] &&
        a1->s6_addr32[3] == a2->s6_addr32[3]);
}

可以利用按位异或实现快速比较, 最新的实现已经修改为:
static inline int ipv6_addr_equal(const struct in6_addr *a1, const struct in6_addr *a2)
{
return (((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
    (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
    (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
    (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0);
}

5 应用通式:
对两个表达式执行按位异或。
result = expression1 ^ expression2
参数
result
任何变量。
expression1
任何表达式。
expression2
任何表达式。
说明
^ 运算符查看两个表达式的二进制表示法的值,并执行按位异或。该操作的结果如下所示:
0101 (expression1)1100 (expression2)—-1001 (结果)当且仅当只有一个表达式的某位上为 1 时,结果的该位才为 1。否则结果的该位为 0。
只能用于整数

下面这个程序用到了“按位异或”运算符:
class E
{ public static void main(String args[ ])
{
char a1=’十’ , a2=’点’ , a3=’进’ , a4=’攻’ ;
char secret=’8’ ;
a1=(char) (a1^secret);
a2=(char) (a2^secret);
a3=(char) (a3^secret);
a4=(char) (a4^secret);
System.out.println(“密文:”+a1+a2+a3+a4);
a1=(char) (a1^secret);
a2=(char) (a2^secret);
a3=(char) (a3^secret);
a4=(char) (a4^secret);
System.out.println(“原文:”+a1+a2+a3+a4);
}
}
其实这就是加密啊解密过程!
char类型,也就是字符类型实际上就是整形,就是数字. 计算机里面所有的信息都是整数,所有的整数都可以表示成二进制的,实际上计算机只认识二进制的. 位运算就是二进制整数运算啦.
两个数按位异或意思就是从个位开始,一位一位的比. 如果两个数相应的位上一样,结果就是0,不一样就是1
所以111^101=010
那加密的过程就是逐个字符跟那个secret字符异或运算. 解密的过程就是密文再跟同一个字符异或运算
010^101=111
至于为什么密文再次异或就变原文了,这个稍微想下就知道了..

位运算符主要针对二进制,它包括了:“与”、“非”、“或”、“异或”。从表面上看似乎有点像逻辑运算符,但逻辑运算符是针对两个关系运算符来进行逻辑运算,而位运算符主要针对两个二进制数的位进行逻辑运算。下面详细介绍每个位运算符。

1.与运算符
与运算符用符号“&”表示,其使用规律如下:
两个操作数中位都为1,结果才为1,否则结果为0,例如下面的程序段。
public class data13
{
public static void main(String[] args)
{
int a=129;
int b=128;
System.out.println(“a 和b 与的结果是:”+(a&b));
}
}
运行结果
a 和b 与的结果是:128
下面分析这个程序:
“a”的值是129,转换成二进制就是10000001,而“b”的值是128,转换成二进制就是10000000。根据与运算符的运算规律,只有两个位都是1,结果才是1,可以知道结果就是10000000,即128。

2.或运算符
或运算符用符号“|”表示,其运算规律如下:
两个位只要有一个为1,那么结果就是1,否则就为0,下面看一个简单的例子。
public class data14
{
public static void main(String[] args)
{
int a=129;
int b=128;
System.out.println(“a 和b 或的结果是:”+(a|b));
}
}
运行结果
a 和b 或的结果是:129
下面分析这个程序段:
a 的值是129,转换成二进制就是10000001,而b 的值是128,转换成二进制就是10000000,根据或运算符的运算规律,只有两个位有一个是1,结果才是1,可以知道结果就是10000001,即129。

3.非运算符
非运算符用符号“~”表示,其运算规律如下:
如果位为0,结果是1,如果位为1,结果是0,下面看一个简单例子。
public class data15
{
public static void main(String[] args)
{
int a=2;
System.out.println(“a 非的结果是:”+(~a));
}
}

4.异或运算符
异或运算符是用符号“^”表示的,其运算规律是:
两个操作数的位中,相同则结果为0,不同则结果为1。下面看一个简单的例子。
public class data16
{
public static void main(String[] args)
{
int a=15;
int b=2;
System.out.println(“a 与 b 异或的结果是:”+(a^b));
}
}
运行结果
a 与 b 异或的结果是:13
分析上面的程序段:a 的值是15,转换成二进制为1111,而b 的值是2,转换成二进制为0010,根据异或的运算规律,可以得出其结果为1101 即13。

猜你喜欢

转载自blog.csdn.net/hht006158/article/details/79127011