2.2 Subspaces

Subspace本身并不是一个很难的概念,就是一个自己也是space的子集合。其检验可以简化为Theorem 1, 即 α , β W , c F c α + β W \alpha,\beta \in W,c\in F\Leftrightarrow c\alpha+\beta\in W , 在很多其他的书中,这个定理用于subspace的定义。Example 6 中给出了一些例子,包括zero subspace,symmetric,Hermitan(self-adjoint)空间等。Example 7 说明homogeneous system的解的集合是一个subspace,并且还推广了一个矩阵的带数乘的分配律,即 A ( d B + C ) = d ( A B ) + A C A(dB+C)=d(AB)+AC ,当然里面矩阵的乘法要有意义。
Theorem 2开始,用一个很新的方式看待某一类特殊的subspace,即subspace spanned by S,Theorem 2首先说明,V的任意subspace的交集还是一个subspace,由此可知,包含S的subspace有一个最小的subspace(不断地取S的subspace的交集),并因此将subspace spanned by S定义出来:所有包含S的subspace的交。这一定义的好处是允许S有无限元素(实际上是无限维元素),当S只包含有限个vector时,subspace spanned by S是传统上大家比较熟悉的样子。Theorem 3即阐述了:subspace spanned by S实际上是S中vector所有的linear combination的集合,注意这里同样没有限制S是有限的,这就是这一种subspace定义方式的好处。
接下来有一个新的定义即集合的和或者说subspace的和,实质是每个集合中任取一个vector并相加而组成的集合。如果 W 1 , W 2 , , W k W_1,W_2,\dots,W_k V V 的subspace,那么 W = W 1 + W 2 + + W k W=W_1+W_2+\dots+W_k 也是一个subspace(按定义可证),并且 W = subspace spanned by  W 1 W k W=\text{subspace spanned by }W_1\cup\dots \cup W_k ,因为采用Theorem 3的类似证法,任意包含 W 1 W k W_1\cup\dots \cup W_k 的subspace都会包含 W W
最后是几个例子,其中Example 10和11比较精彩。Example 10提出了row-space的概念,其是矩阵的row vectors spanned的subspace,为未来引入矩阵的rank打下基础。Example 11是一个无限维的subspace的例子,并且为第四章介绍多项式打下基础。

Exercises

1. Which of the following sets of vectors α = ( a 1 , , a n ) \alpha =(a_1,\dots,a_n) in R n R^n are subspaces of R n ( n 3 ) R^n(n\geq3) ?

( a ) all α \alpha such that a 1 0 a_1\geq0 ;
( b ) all α \alpha such that a 1 + 3 a 2 = a 3 a_1+3a_2=a_3 ;
( c ) all α \alpha such that a 2 = a 1 2 a_2=a_1^2 ;
( d ) all α \alpha such that a 1 a 2 = 0 a_1a_2=0 ;
( e ) all α \alpha such that a 2 a_2 is rational.
Solution:
(a) No, since ( 1 , 0 , , 0 ) (1,0,\dots,0) satisfies, but ( 1 , 0 , , 0 ) = ( 1 , 0 , , 0 ) -(1,0,\dots,0)=(-1,0,\dots,0) doesn’t.
(b) Yes, for α = ( a 1 , , a n ) , β = ( b 1 , , b n ) \alpha=(a_1,\dots,a_n ),\beta=(b_1,\dots,b_n) , if a 1 + 3 a 2 = a 3 , b 1 + 3 b 2 = b 3 a_1+3a_2=a_3,b_1+3b_2=b_3 , then any c R c\in R , the vector c α + β = ( c a 1 + b 1 , , c a n + b n ) c\alpha+\beta=(ca_1+b_1,\dots,ca_n+b_n) has the property
( c a 1 + b 1 ) + 3 ( c a 2 + b 2 ) = c ( a 1 + 3 a 2 ) + b 1 + 3 b 2 = c a 3 + b 3 (ca_1+b_1 )+3(ca_2+b_2 )=c(a_1+3a_2 )+b_1+3b_2=ca_3+b_3
( c ) No, since ( 1 , 1 , , 0 ) (1,1,\dots,0) satisfies, but 2 ( 1 , 1 , , 0 ) = ( 2 , 2 , , 0 ) 2(1,1,\dots,0)=(2,2,\dots,0) doesn’t.
(d) No, since ( 1 , 0 , , 0 ) (1,0,\dots,0) and ( 0 , 1 , , 0 ) (0,1,\dots,0) satisfies, but ( 1 , 1 , , 0 ) = ( 1 , 0 , , 0 ) + ( 0 , 1 , , 0 ) (1,1,\dots,0)=(1,0,\dots,0)+(0,1,\dots,0) doesn’t.
(e) No, since ( 0 , 1 , , 0 ) (0,1,\dots,0) satisfies, but 2 ( 0 , 1 , , 0 ) = ( 0 , 2 , , 0 ) \sqrt{2} (0,1,\dots,0)=(0,\sqrt{2},\dots,0) doesn’t.

2. Let V V be the (real) vector space of all functions f f from R R into R R . Which of the following sets of functions are subspaces of V V ?

( a ) all f f such that f ( x 2 ) = f ( x ) 2 f(x^2)=f(x)^2 ;
( b ) all f f such that f ( 0 ) = f ( 1 ) f(0)=f(1) ;
( c ) all f f such that f ( 3 ) = 1 + f ( 5 ) f(3)=1+f(-5) ;
( d ) all f f such that f ( 1 ) = 0 f(-1)=0 ;
( e ) all f f which are continuous.
Solution:
(a) No, consider f ( x ) = 1 f(x)=1 if x 0 x\geq 0 and f ( x ) = 1 f(x)=-1 if x < 0 x<0 , then f ( x 2 ) = 1 = f ( x ) 2 f(x^2 )=1=f(x)^2 , but 2 f ( x ) 2f(x) doesn’t satisfy ( 2 f ) ( x 2 ) = ( 2 f ( x ) ) 2 (2f)(x^2 )=(2f(x))^2 since ( 2 f ) ( x 2 ) = 2 (2f)(x^2 )=2 , while ( 2 f ( x ) ) 2 = 4 (2f(x))^2=4 .
(b) Yes, if f , g f,g are functions s.t. f ( 0 ) = f ( 1 ) , g ( 0 ) = g ( 1 ) f(0)=f(1),g(0)=g(1) , then
( c f + g ) ( 0 ) = ( c f ) ( 0 ) + g ( 0 ) = c f ( 0 ) + g ( 0 ) = c f ( 1 ) + g ( 1 ) = ( c f + g ) ( 1 ) , c R (cf+g)(0)=(cf)(0)+g(0)=cf(0)+g(0)=cf(1)+g(1)=(cf+g)(1),\quad \forall c\in R
( c ) No, if f satisfies f ( 3 ) = 1 + f ( 5 ) f(3)=1+f(-5) , then 2 f 2f doesn’t, since
( 2 f ) ( 3 ) = 2 f ( 3 ) = 2 + 2 f ( 5 ) = 2 + ( 2 f ) ( 5 ) 1 + ( 2 f ) ( 5 ) (2f)(3)=2f(3)=2+2f(-5)=2+(2f)(-5)\neq 1+(2f)(-5)
(d) Yes, if if f , g f,g are functions s.t. f ( 1 ) = g ( 1 ) = 0 f(-1)=g(-1)=0 , then
( c f + g ) ( 1 ) = c f ( 1 ) + g ( 1 ) = 0 + 0 = 0 , c R (cf+g)(-1)=cf(-1)+g(-1)=0+0=0,\quad \forall c\in R
(e) Yes, since c f + g cf+g is continuous for any continuous functions f , g f,g .

3.Is the vector ( 3 , 1 , 0 , 1 ) (3,-1,0,-1) in the subspace of R 5 R^5 spanned by the vectors ( 2 , 1 , 3 , 2 ) , ( 1 , 1 , 1 , 3 ) (2,-1,3,2),(-1,1,1,-3) and ( 1 , 1 , 9 , 5 ) (1,1,9,-5) ?

Solution: It’s equivalent to determine whether the system of equations
{ 2 x 1 x 2 + x 3 = 3 x 1 + x 2 + x 3 = 1 3 x 1 + x 2 + 9 x 3 = 0 2 x 1 3 x 2 5 x 3 = 1 \begin{cases}2x_1-x_2+x_3=3\\-x_1+x_2+x_3=-1\\3x_1+x_2+9x_3=0\\2x_1-3x_2-5x_3=-1\end{cases}
has solutions or not. Since
A = [ 2 1 1 3 1 1 1 1 3 1 9 0 2 3 5 1 ] [ 1 1 1 1 0 1 3 1 0 4 13 3 0 1 3 3 ] [ 1 1 1 1 0 1 3 1 0 4 13 3 0 0 0 4 ] A'=\begin{bmatrix}2&-1&1&3\\-1&1&1&-1\\3&1&9&0\\2&-3&-5&-1\end{bmatrix}\rightarrow\begin{bmatrix}-1&1&1&-1\\0&1&3&1\\0&4&13&-3\\0&-1&-3&-3\end{bmatrix}\rightarrow\begin{bmatrix}1&-1&-1&1\\0&1&3&1\\0&4&13&-3\\0&0&0&-4\end{bmatrix}
this system of equations has no solution, thus the answer is no.

4. Let W W be the set of all ( x 1 , x 2 , x 3 , x 4 , x 5 ) (x_1,x_2,x_3,x_4,x_5) in R 5 R^5 which satisfy

2 x 1 x 2 + 4 3 x 3 x 4 = 0 x 1 + 2 3 x 3 x 5 = 0 9 x 1 3 x 2 + 6 x 3 3 x 4 3 x 5 = 0 \begin{array}{c}2x_1-x_2+\frac{4}{3}x_3-x_4&=0\\x_1+\frac{2}{3}x_3-x_5&=0\\9x_1-3x_2+6x_3-3x_4-3x_5&=0\end{array}

Find a finite set of vectors which spans W W .

Solution: We have
[ 2 1 4 / 3 1 0 1 0 2 / 3 0 1 9 3 6 3 3 ] [ 1 0 2 / 3 0 1 0 1 0 1 2 3 1 2 1 1 ] [ 1 0 2 / 3 0 1 0 1 0 1 2 0 1 0 1 2 ] [ 1 0 2 / 3 0 1 0 1 0 1 2 0 0 0 0 0 ] \begin{bmatrix}2&-1&4/3&-1&0\\1&0&2/3&0&-1\\9&-3&6&-3&-3\end{bmatrix}\rightarrow\begin{bmatrix}1&0&2/3&0&-1\\0&-1&0&-1&2\\3&-1&2&-1&-1\end{bmatrix}\\ \rightarrow\begin{bmatrix}1&0&2/3&0&-1\\0&1&0&1&-2\\0&-1&0&-1&2\end{bmatrix}\rightarrow\begin{bmatrix}1&0&2/3&0&-1\\0&1&0&1&-2\\0&0&0&0&0\end{bmatrix}
The solutions to the system can be written as x 1 = x 5 2 3 x 3 , x 2 = 2 x 5 x 4 x_1=x_5-\frac{2}{3} x_3,x_2=2x_5-x_4 . The finite set of vectors which spans W W can be found as ( 2 , 0 , 3 , 0 , 0 ) , ( 0 , 1 , 0 , 1 , 0 ) , ( 1 , 2 , 0 , 0 , 1 ) (-2,0,3,0,0),(0,-1,0,1,0),(1,2,0,0,1)

5. Let F F be a field and let N N be a positive integer ( n 2 ) (n\geq2) . Let V V be the vector space of all n × n n\times n matrices over F F . Which of the following sets of matrices A A in V V are subspaces of V V ?

( a ) all invertible A A ;
( b ) all non-invertible A A ;
( c ) all A A such that A B = B A AB=BA , where B B is some fixed matrix in V V ;
( d ) all A A such that A 2 = A A^2=A .
Solution:
(a) No, since A = [ 1 1 ] , B = [ 1 1 0 1 ] A=\begin{bmatrix}1&\\&1\end{bmatrix},B=\begin{bmatrix}1&1\\0&1\end{bmatrix} are invertible matrices, but B A = [ 0 1 0 0 ] B-A=\begin{bmatrix}0&1\\0&0\end{bmatrix} is not.
(b) No, since A = [ 1 0 0 0 ] , B = [ 0 0 0 1 ] A=\begin{bmatrix}1&0\\0&0\end{bmatrix},B=\begin{bmatrix}0&0\\0&1\end{bmatrix} are not invertible, but A + B = [ 1 0 0 1 ] A+B=\begin{bmatrix}1&0\\0&1\end{bmatrix} is.
( c ) Yes, since for A , C A,C belongs to the set, we have ( d A + C ) B = d ( A B ) + C B = d ( B A ) + B C = B ( d A + C ) , d F (dA+C)B=d(AB)+CB=d(BA)+BC=B(dA+C),\forall d\in F
(d) No, since if A = [ 1 0 0 1 ] A=\begin{bmatrix}1&0\\0&1\end{bmatrix} , then A 2 = A A^2=A , but 3 A = [ 3 0 0 3 ] 3A=\begin{bmatrix}3&0\\0&3\end{bmatrix} and ( 3 A ) 2 = 9 I = 3 ( 3 A ) (3A)^2=9I=3(3A) .

6. ( a ) Prove that the only subspaces of R 1 R^1 are R 1 R^1 and the zero subspace.
( b ) Prove that a subspace of R 2 R^2 is R 2 R^2 , or the zero subspace, or consists of all scalar multiples of some fixed vector in R 2 R^2 . (The last type of subspace is, intuitively, a straight line throuth the origin.)
( c ) Can you describe the subspace of R 3 R^3 ?

Solution:
(a) It’s apparent that R 1 R^1 and the zero space are subspaces of R 1 R^1 , assume there’s W R 1 W\subset R^1 which is a subspace different from R 1 R^1 and the zero space, then there’s a W , a 0 a\in W,a\neq 0 and b W b\notin W , let k = b / a k=b/a , then b = k a b=ka , which means b W b\in W since W W is a subspace, this is a contradiction.
(b) It’s apparent that R 2 R^2 and the zero space are subspaces of R 2 R^2 , if W = { k v : v R 2 } W=\{kv:v\in R^2 \} , then it’s easy to prove W W is a subspace of R 2 R^2 . Assume there’s U R 2 U\subset R^2 which is a subspace, but not of the three types above, then 0 U 0\in U and u U , v U \exists u\in U,\exists v\notin U , since U U is not of the last type, we can find u U u'\in U s.t. u u' is not a scalar multiple of u u , thus we must be able to find x 1 , x 2 R x_1,x_2\in R s.t. x 1 u + x 2 u = v x_1 u+x_2 u'=v , this means v U v\in U and thus a contradiction.
( c ) The subspaces of R 3 R^3 is R 3 R^3 , the zero subspace, all forms of { k v + l u : u , v R 3 , k , l R } \{kv+lu:u,v\in R^3,k,l\in R\} .

7. Let W 1 W_1 and W 2 W_2 be subspaces of a vector space V V such that the set-theoretic union of W 1 W_1 and W 2 W_2 is also a subspace. Prove that one of the spaces W i W_i is contained in the other.

Solution: Let W = W 1 W 2 W=W_1\cup W_2 , then W W is a subspace of V V , assume a W 1 \ W 2 , b W 2 \ W 1 \exists a\in W_1\backslash W_2,b\in W_2\backslash W_1 , then a , b W a,b\in W , thus a + b W a+b\in W , which means ( a + b W 1 ) ( a + b W 2 ) (a+b\in W_1 )\vee (a+b\in W_2 ) , but this means
( b = ( a + b ) a W 1 ) ( a = ( a + b ) b W 2 ) (b=(a+b)-a\in W_1 )\vee (a=(a+b)-b\in W_2 )
and either leads to a contradiction, thus either W 1 \ W 2 = W_1\backslash W_2=\empty or W 2 \ W 1 = W_2\backslash W_1=\empty , the conclusion follows.

8. Let V V be the vector space of all functions from R R into R R ; let V e V_e be the subset of even functions, f ( x ) = f ( x ) f(--x)=f(x) ; let V o V_o be the subset of odd functions, f ( x ) = f ( x ) f(-x)=-f(x) .

( a ) Prove that V e V_e and V o V_o are subspaces of V V .
( b ) Prove that V e + V o = V V_e+V_o=V .
( c ) Prove that V e V o = { 0 } V_e\cap V_o=\{0\} .
Solution:
(a) first let f , g V e f,g\in V_e , then f f and g g are even functions, for c R c\in R we have
( c f + g ) ( x ) = c f ( x ) + g ( x ) = c f ( x ) + g ( x ) = ( c f + g ) ( x ) (cf+g)(-x)=cf(-x)+g(-x)=cf(x)+g(x)=(cf+g)(x)
thus c f + g V e cf+g\in V_e and V e V_e is a subspace of V V . Similarly, if f , g V o f,g\in V_o , then
( c f + g ) ( x ) = c f ( x ) + g ( x ) = c f ( x ) g ( x ) = ( c f + g ) ( x ) (cf+g)(-x)=cf(-x)+g(-x)=-cf(x)-g(x)=-(cf+g)(x)
thus c f + g V o cf+g\in V_o and V o V_o is a subspace of V.
(b) let h V \forall h\in V , define
f ( x ) = h ( x ) + h ( x ) 2 , g ( x ) = h ( x ) h ( x ) 2 f(x)=\dfrac{h(x)+h(-x)}{2},\quad g(x)=\dfrac{h(x)-h(-x)}{2}
then f ( x ) = f ( x ) , g ( x ) = g ( x ) f(-x)=f(x),g(-x)=-g(x) , so f V e , g V o f\in V_e,g\in V_o , and f + g = h f+g=h .
( c ) If h V e V o h\in V_e\cap V_o , then h ( x ) = h ( x ) = h ( x ) h(-x)=h(x)=-h(x) , thus h ( x ) = 0 , x R h(x)=0,\forall x\in R .

9. Let W 1 W_1 and W 2 W_2 be subspaces of a vector space V V such that W 1 + W 2 = V W_1+W_2=V and W 1 W 2 = { 0 } W_1\cap W_2=\{0\} . Prove thet for each vector α \alpha in V V there are unique vectors α 1 \alpha_1 in W 1 W_1 and α 2 \alpha_2 in W 2 W_2 such that α = α 1 + α 2 \alpha = \alpha_1+\alpha_2 .

Solution: Let α V α\in V , since V = W 1 + W 2 V=W_1+W_2 , we can find α 1 W 1 , α 2 W 2 s . t . α = α 1 + α 2 α_1\in W_1,α_2\in W_2 s.t. α=α_1+α_2 .
To prove uniqueness, suppose there’s β 1 W 1 , , β 2 W 2 β_1\in W_1,,β_2\in W_2 s.t. α = β 1 + β 2 α=β_1+β_2 , then
α 1 + α 2 = β 1 + β 2 α 1 β 1 = β 2 α 2 α_1+α_2=β_1+β_2 \Rightarrow α_1-β_1=β_2-α_2
since α 1 β 1 W 1 α_1-β_1\in W_1 and β 2 α 2 W 2 β_2-α_2\in W_2 , we know that α 1 β 1 W 1 W 2 , β 2 α 2 W 1 W 2 α_1-β_1\in W_1\cap W_2,β_2-α_2\in W_1\cap W_2 , thus α 1 β 1 = β 2 α 2 = 0 α_1-β_1=β_2-α_2=0 , which means α 1 = β 1 , β 2 = α 2 α_1=β_1,β_2=α_2 .

发布了77 篇原创文章 · 获赞 14 · 访问量 2801

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/103270185
2.2