python基础之生成器迭代器

生成器

生成器概念

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

生成器创建

要创建一个generator,有很多种方法。

方法一:列表生成器创建

只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。

可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值

generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误

...
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

正确的方法是使用for循环,因为generator也是可迭代对象

>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)
方法二:带有yield的函数
示例一:斐波那契数列
def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
        return 'done'
>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>
>>> for n in fib(6):
...     print(n)
...
1
1
2
3
5
8

用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

>>> g = fib(6)
>>> while True:
...     try:
...         x = next(g)
...         print('g:', x)
...     except StopIteration as e:
...         print('Generator return value:', e.value)
...         break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done
示例二:杨辉三角
def triangles():
	L = [1]
	while True:
		yield L
		L1 = [0] + L
		L2 = L + [0]
		L = [L1[i]+L2[i] for i in range(0,len(L1))]
或者:
def triangles():
    while True:
        L = [1 if x == 0 or x == n else results[n-1][x-1]+results[n-1][x] for x in range(n+1)]
        yield L
        pass
n = 0
results = []
for t in triangles():
    results.append(t)
    n = n + 1
    if n == 10:
        break

for t in results:
    print(t)

总结

在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。

要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。

普通函数和generator函数,普通函数调用直接返回结果:

>>> r = abs(6)
>>> r
6

generator函数的“调用”实际返回一个generator对象:

>>> g = fib(6)
>>> g
<generator object fib at 0x1022ef948>

迭代器

迭代器概念

可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如list、tuple、dict、set、str等;
一类是generator,包括生成器和带yield的generator function。
这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections.abc import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections.abc import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

迭代器创建

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。

把list、dict、str等Iterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

为什么list、dict、str等数据类型不是Iterator?

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的

总结

凡是可作用于for循环的对象都是Iterable类型; 凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列; 集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。 Python的for循环本质上就是通过不断调用next()函数实现的
原创文章 31 获赞 3 访问量 1981

猜你喜欢

转载自blog.csdn.net/qq_43779011/article/details/105986731