信号处理常用公式(一)

积化和差

cos α cos β = 1 2 [ cos ( α + β ) + cos ( α β ) ] \cos \alpha \cos \beta = \frac{1}{2}[\cos (\alpha + \beta ) + \cos (\alpha - \beta )] sin α cos β = 1 2 [ sin ( α + β ) + sin ( α β ) ] \sin \alpha \cos \beta = \frac{1}{2}[\sin (\alpha + \beta ) + \sin (\alpha - \beta )] sin α sin β = 1 2 [ cos ( α β ) cos ( α + β ) ] \sin \alpha \sin \beta = \frac{1}{2}[\cos (\alpha - \beta ) - \cos (\alpha + \beta )] cos α sin β = 1 2 [ sin ( α + β ) sin ( α β ) ] \cos \alpha \sin \beta = \frac{1}{2}[\sin (\alpha + \beta ) - \sin (\alpha - \beta )]

自相关与互相关

R X ( t 2 , t 1 ) = R X ( t 1 , t 2 ) {R_X}({t_2},{t_1}) = R_X^*({t_1},{t_2}) R X Y ( t 2 , t 1 ) = R Y X ( t 1 , t 2 ) {R_{XY}}({t_2},{t_1}) = R_{YX}^*({t_1},{t_2}) R X ( t 2 , t 1 ) = R X ( τ ) , τ = t 1 t 2 {R_X}({t_2},{t_1}) = {R_X}(\tau ),\quad \tau = {t_1} - {t_2}

矩阵微分

Y Y B B R R 均代表矩阵, z z a a 代表向量,上标T表示转置, * 表示共轭,H表示共轭转置。
Y T B B = Y \frac{{\partial {Y^{\mathop{\rm T}\nolimits} }B}}{{\partial B}} = Y B T Y B = Y \frac{{\partial {B^{\mathop{\rm T}\nolimits} }Y}}{{\partial B}} = Y

规律总结:前面”为转置,对“不转置”求导,结果为“另一个不转置

B T Y T Y B B = 2 Y T Y B \frac{{\partial {B^{\mathop{\rm T}\nolimits} }{Y^{\mathop{\rm T}\nolimits} }YB}}{{\partial B}} = 2{Y^{\mathop{\rm T}\nolimits} }YB B T B B = 2 B \frac{{\partial {B^{\mathop{\rm T}\nolimits} }B}}{{\partial B}} = 2B B T W B B = W B + W T B \frac{{\partial {B^{\mathop{\rm T}\nolimits} }WB}}{{\partial B}} = WB + {W^{\mathop{\rm T}\nolimits} }B
特别地, W T = W {{W^{\mathop{\rm T}\nolimits} } = W} 时,
B T W B B = W B + W T B = 2 W B \frac{{\partial {B^{\mathop{\rm T}\nolimits} }WB}}{{\partial B}} = WB + {W^{\mathop{\rm T}\nolimits} }B = 2WB

z {\nabla _{{z^*}}} 表示对向量 z {{z^*}} 进行微分, z {\nabla _z} 表示对向量 z {{z}} 进行微分,则
z ( a H z ) = 0 {\nabla _{{z^*}}}({a^{\rm{H}}}z){\rm{ = }}{\bf{0}} z ( z H a ) = a {\nabla _{{z^*}}}({z^{\rm{H}}}a){\rm{ = }}a z ( z H R z ) = R z {\nabla _{{z^*}}}({z^{\rm{H}}}Rz){\rm{ = }}Rz z ( a H z ) = a {\nabla _z}({a^{\rm{H}}}z) = {a^*} z ( z H a ) = 0 {\nabla _z}({z^{\rm{H}}}a) = {\bf{0}} z ( z H R z ) = R T z = ( R H z ) {\nabla _z}({z^{\rm{H}}}Rz) = {R^{\rm{T}}}{z^{\rm{*}}}{\rm{ = (}}{R^{\rm{H}}}z{)^{\rm{*}}}

一个计算小技巧

已知基向量两两正交

f m ( t ) f n ( t ) d t = δ ( m n ) \int_{ - \infty }^\infty {{f_m}(t)f_n^*(t)dt} = \delta (m - n)

s ( t ) {s(t)} 可由基向量线性组合近似

s ^ ( t ) = k = 1 K s k f k ( t ) \hat s(t) = \sum\limits_{k = 1}^K {{s_k}{f_k}(t)}

由误差与基向量正交,有

s ( t ) s ^ ( t ) , f n ( t ) = 0 s n = s ( t ) , f n ( t ) \left\langle {s(t) - \hat s(t),{f_n}(t)} \right\rangle = 0 \Rightarrow {s_n} = \left\langle {s(t),{f_n}(t)} \right\rangle

则误差的二范数为

ε e = ( s ( t ) s ^ ( t ) ) ( s ( t ) s ^ ( t ) ) d t {\varepsilon _e} = \int_{ - \infty }^\infty {(s(t) - \hat s(t)){{(s(t) - \hat s(t))}^*}dt}

= s ( t ) 2 d t k = 1 K s k f k ( t ) s ( t ) d t s ( t ) s ^ ( t ) , s ^ ( t ) = \int_{ - \infty }^\infty {|s(t){|^2}dt} - \int_{ - \infty }^\infty {\sum\limits_{k = 1}^K {{s_k}{f_k}(t)} \cdot {s^*}(t)dt}- \left\langle {s(t) - \hat s(t),{{\hat s}^*}(t)} \right\rangle

= s ( t ) 2 d t k = 1 K s k [ s ( t ) f k ( t ) d t ] = \int_{ - \infty }^\infty {|s(t){|^2}dt} - \sum\limits_{k = 1}^K {{s_k}{{[\int_{ - \infty }^\infty {s(t)f_k^*(t)dt} ]}^*}}

= s ( t ) 2 d t k = 1 K s k s k = \int_{ - \infty }^\infty {|s(t){|^2}dt} - \sum\limits_{k = 1}^K {{s_k}s_k^*}

= s ( t ) 2 d t k = 1 K s k 2 = \int_{ - \infty }^\infty {|s(t){|^2}dt} - \sum\limits_{k = 1}^K {|{s_k}{|^2}}

猜你喜欢

转载自blog.csdn.net/wlwdecs_dn/article/details/107172867