【2020.12.30更新】数学常用基本公式

泰勒级数

条件不多说了,函数 f ( x ) f(x) f(x)在点 x = x 0 x = {x_0} x=x0出展开为
f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + ⋯ f({x_0}) + f'({x_0})(x - {x_0}) + \frac{ {f''({x_0})}}{ {2!}}{(x - {x_0})^2} + \cdots + \frac{ { {f^{(n)}}({x_0})}}{ {n!}}{(x - {x_0})^n} + \cdots f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(x0)(xx0)n+

超量均方误差(超量MSE)

误差 e ( k ) e(k) e(k),则 ξ ( k ) \xi (k) ξ(k) e ( k ) e(k) e(k)平方的期望(也是MSE曲面),即
ξ ( k ) = E [ e 2 ( k ) ] \xi (k) = E\left[ { {e^2}(k)} \right] ξ(k)=E[e2(k)]

e ( k ) = e 0 ( k ) − Δ w T ( k ) x ( k ) e(k) = {e_0}(k) - \Delta { {\bf{w}}^T}(k){\bf{x}}(k) e(k)=e0(k)ΔwT(k)x(k)

式中, e 0 ( k ) e_0(k) e0(k)为最优输出误差 e 0 ( k ) = d ( k ) − w 0 T x ( k ) e_0(k)=d(k)-{\bf{w_0^T} x}(k) e0(k)=d(k)w0Tx(k),其平方的期望为 ξ min ⁡ {\xi _{\min }} ξmin

R = E [ x ( k ) x T ( k ) ] {\bf{R}} = E\left[ { {\bf{x}}(k){ {\bf{x}}^{\mathop{\rm T}\nolimits} }(k)} \right] R=E[x(k)xT(k)]

ξ ( k ) = ξ min ⁡ + t r { E [ x ( k ) x T ( k ) ] E [ Δ w ( k ) Δ w T ( k ) ] } = ξ min ⁡ + E [ Δ w ( k ) Δ w T ( k ) ] \xi (k) = {\xi _{\min }} + {\mathop{\rm tr}\nolimits} \left\{ {E\left[ { {\bf{x}}(k){ {\bf{x}}^{\mathop{\rm T}\nolimits} }(k)} \right]E\left[ {\Delta {\bf{w}}(k)\Delta { {\bf{w}}^{\mathop{\rm T}\nolimits} }(k)} \right]} \right\}\\ = {\xi _{\min }} + E\left[ {\Delta {\bf{w}}(k)\Delta { {\bf{w}}^{\mathop{\rm T}\nolimits} }(k)} \right] ξ(k)=ξmin+tr{ E[x(k)xT(k)]E[Δw(k)ΔwT(k)]}=ξmin+E[Δw(k)ΔwT(k)]

则MSE的超量定义为

Δ ξ ( k ) ≜ ξ ( k ) − ξ min ⁡ \Delta \xi (k) \triangleq \xi (k) - {\xi _{\min }} Δξ(k)ξ(k)ξmin

超量均方误差为

ξ exc = lim ⁡ k → ∞ Δ ξ ( k ) {\xi _{ {\text{exc}}}} = \mathop {\lim }\limits_{k \to \infty } \Delta \xi (k) ξexc=klimΔξ(k)

重要关系式: t r [ R ] = E [ ∣ x ( k ) ∣ 2 ] {\mathop{\rm tr}\nolimits} \left[ {\bf{R}} \right] = E\left[ { { {\left| { {\bf{x}}(k)} \right|}^2}} \right] tr[R]=E[x(k)2]

[\tau ][\pi ]

G 2 ( f B , τ ) G_2(f_B, \tau) G2(fB,τ) τ \tau τ的关系

τ \tau τ为矩形脉冲的宽度,则经过归一化
G 2 ( f B , τ ) = s i n ( π f B ∗ τ ) / π G_2(f_B, \tau)=sin(\pi f_B*\tau)/\pi G2(fB,τ)=sin(πfBτ)/π

τ = 0.1 T s \tau = 0.1T_s τ=0.1Ts时, G 2 ( f B , τ ) = s i n ( 0.1 π ) / π = 0.0984 G_2(f_B, \tau)=sin(0.1\pi)/\pi=0.0984 G2(fB,τ)=sin(0.1π)/π=0.0984
τ = 0.5 T s \tau = 0.5T_s τ=0.5Ts时, G 2 ( f B , τ ) = s i n ( 0.5 π ) / π = 0.3183 G_2(f_B, \tau)=sin(0.5\pi)/\pi=0.3183 G2(fB,τ)=sin(0.5π)/π=0.3183
τ = 0.9 T s \tau = 0.9T_s τ=0.9Ts时, G 2 ( f B , τ ) = s i n ( 0.9 π ) / π = 0.0984 G_2(f_B, \tau)=sin(0.9\pi)/\pi=0.0984 G2(fB,τ)=sin(0.9π)/π=0.0984

向量范数

定义一个向量为:a=[-5,6,8,10]。

  • 向量的1范数:向量的各个元素的绝对值之和,上述向量a的1范数结果就是:29。
  • 向量的2范数:向量的各个元素的平方和再开平方根,上述a的2范数结果就是:15。
  • 向量的负无穷范数:向量的所有元素的绝对值中最小的:上述向量a的负无穷范数结果就是:5。
  • 向量的正无穷范数:向量的所有元素的绝对值中最大的:上述向量a的正无穷范数结果就是:10。

猜你喜欢

转载自blog.csdn.net/wlwdecs_dn/article/details/107183693