YBT高效进阶 6.2.5 余数之和

YBT高效进阶 6.2.5 余数之和

思路

( n , k ) (n,k) (n,k)

= ∑ i = 1 n k   m o d   i =\sum_{i=1}^nk\bmod i =i=1nkmodi

= ∑ i = 1 n k − ⌊ k i ⌋ =\sum_{i=1}^nk-\left\lfloor \dfrac ki \right\rfloor =i=1nkik

= n ∗ k − ∑ i = 1 n ⌊ k i ⌋ =n*k-\sum_{i=1}^n\left\lfloor \dfrac ki \right\rfloor =nki=1nik

分块

i ∈ [ x , ⌊ k ⌊ k x ⌋ ⌋ ] 时 ⌊ k i ⌋ 的 值 相 等 i\in[x,\left\lfloor \dfrac k{\left\lfloor\dfrac kx\right\rfloor} \right\rfloor]时\left\lfloor \dfrac ki \right\rfloor的值相等 i[x,xkk]ik

再用等差数列

( x + ⌊ k ⌊ k x ⌋ ⌋ ) / 2 (x+\left\lfloor \dfrac k{\left\lfloor\dfrac kx\right\rfloor} \right\rfloor)/2 (x+xkk)/2

n ∗ k − ∑ i = 1 n ⌊ k i ⌋ n*k-\sum_{i=1}^n\left\lfloor \dfrac ki \right\rfloor nki=1nik

= n ∗ k − ∑ ( x + ⌊ k ⌊ k x ⌋ ⌋ ) ∗ ( ⌊ k ⌊ k x ⌋ ⌋ − x + 1 ) / 2 ∗ ⌊ k x ⌋ =n*k-\sum(x+\left\lfloor \dfrac k{\left\lfloor\dfrac kx\right\rfloor} \right\rfloor)*(\left\lfloor \dfrac k{\left\lfloor\dfrac kx\right\rfloor} \right\rfloor-x+1)/2*\left\lfloor \dfrac kx \right\rfloor =nk(x+xkk)(xkkx+1)/2xk

CODE

#include<iostream> 
#include<cstdio>
using namespace std;
int main()
{
    
    
	long long ans,n,k,i,x;
	scanf("%lld%lld",&n,&k);
	for(ans=n*k,i=1;i<=n;i=x+1)x=(k/i)?min(n,k/(k/i)):n,ans-=k/i*(i+x)*(x-i+1)/2;
	printf("%lld",ans);
	return 0;
}

猜你喜欢

转载自blog.csdn.net/weixin_46975572/article/details/117777648