陶哲轩实分析 3.4 补充

前段时间太忙,一直没有更新。今天有点空闲,再更新两道题。

陶哲轩实分析 3.4.10 和 3.4.11

3.4.10

(1)
∀ x ∈ ( ∪ α ∈ I A α ) ∪ ( ∪ α ∈ J A α ) \forall x \in (\cup_{\alpha \in I} A_\alpha) \cup (\cup_{\alpha \in J} A_\alpha) x(αIAα)(αJAα) x ∈ ( ∪ α ∈ I A α ) x \in (\cup_{\alpha \in I} A_\alpha) x(αIAα) 或者 x ∈ ( ∪ α ∈ J A α ) x \in (\cup_{\alpha \in J} A_\alpha) x(αJAα)

分两种情况讨论:
x ∈ ( ∪ α ∈ I A α ) x \in (\cup_{\alpha \in I} A_\alpha) x(αIAα) 时, x ∈ ( ∪ α ∈ I ∪ J A α ) x \in (\cup_{\alpha \in I \cup J} A_\alpha) x(αIJAα)
x ∈ ( ∪ α ∈ J A α ) x \in (\cup_{\alpha \in J} A_\alpha) x(αJAα) 时, x ∈ ( ∪ α ∈ I ∪ J A α ) x \in (\cup_{\alpha \in I \cup J} A_\alpha) x(αIJAα)

所以
( ∪ α ∈ I A α ) ∪ ( ∪ α ∈ J A α ) ⊆ ( ∪ α ∈ I ∪ J A α ) (\cup_{\alpha \in I} A_\alpha) \cup (\cup_{\alpha \in J} A_\alpha) \subseteq (\cup_{\alpha \in I \cup J} A_\alpha) (αIAα)(αJAα)(αIJAα)

∀ x ∈ ( ∪ α ∈ I ∪ J A α ) \forall x \in (\cup_{\alpha \in I \cup J} A_\alpha) x(αIJAα) x ∈ ( ∪ α ∈ I A α ) x \in (\cup_{\alpha \in I} A_\alpha) x(αIAα) x ∈ ( ∪ α ∈ J A α ) x \in (\cup_{\alpha \in J} A_\alpha) x(αJAα)
所以 ∀ x ∈ ( ∪ α ∈ I A α ) ∪ ( ∪ α ∈ J A α ) \forall x \in (\cup_{\alpha \in I} A_\alpha) \cup (\cup_{\alpha \in J} A_\alpha) x(αIAα)(αJAα)

所以

( ∪ α ∈ I ∪ J A α ) ⊆ ( ∪ α ∈ I A α ) ∪ ( ∪ α ∈ J A α ) (\cup_{\alpha \in I \cup J} A_\alpha) \subseteq (\cup_{\alpha \in I} A_\alpha) \cup (\cup_{\alpha \in J} A_\alpha) (αIJAα)(αIAα)(αJAα)

所以
( ∪ α ∈ I ∪ J A α ) = ( ∪ α ∈ I A α ) ∪ ( ∪ α ∈ J A α ) (\cup_{\alpha \in I \cup J} A_\alpha) = (\cup_{\alpha \in I} A_\alpha) \cup (\cup_{\alpha \in J} A_\alpha) (αIJAα)=(αIAα)(αJAα)

(2) ∀ x ∈ ( ∩ α ∈ I A α ) ∩ ( ∩ α ∈ J A α ) \forall x \in ( \cap_{\alpha \in I }A_\alpha) \cap ( \cap_{\alpha \in J }A_\alpha) x(αIAα)(αJAα)
表明:

x ∈ ∩ α ∈ I A α x \in \cap_{\alpha \in I }A_\alpha xαIAα 同时 x ∈ ∩ α ∈ J A α x \in \cap_{\alpha \in J }A_\alpha xαJAα

表明:
∀ α ∈ I , x ∈ A α \forall \alpha \in I , x \in A_\alpha αI,xAα ,同时 ∀ α ∈ J , x ∈ A α \forall \alpha \in J , x \in A_\alpha αJ,xAα
所以 ∀ α ∈ I ∪ J , x ∈ A α \forall \alpha \in I \cup J , x \in A_\alpha αIJ,xAα
所以 ∀ x ∈ ( ∩ α ∈ I ∪ J A α ) \forall x \in ( \cap_{\alpha \in I \cup J }A_\alpha) x(αIJAα)

所以 ( ∩ α ∈ I A α ) ∩ ( ∩ α ∈ J A α ) ⊆ ( ∩ α ∈ I ∪ J A α ) ( \cap_{\alpha \in I }A_\alpha) \cap ( \cap_{\alpha \in J }A_\alpha) \subseteq ( \cap_{\alpha \in I \cup J }A_\alpha) (αIAα)(αJAα)(αIJAα)

∀ x ∈ ∩ α ∈ I ∪ J A α \forall x \in \cap_{\alpha \in I \cup J }A_\alpha xαIJAα
表明: ∀ α ∈ I ∪ J , x ∈ A α \forall \alpha \in I \cup J, x \in A_\alpha αIJ,xAα
所以:
∀ α ∈ I , x ∈ A α \forall \alpha \in I, x \in A_\alpha αI,xAα 同时 ∀ α ∈ J , x ∈ A α \forall \alpha \in J, x \in A_\alpha αJ,xAα
所以 x ∈ ( ∩ α ∈ I A α ) x \in ( \cap_{\alpha \in I }A_\alpha) x(αIAα) 同时 x ∈ ( ∩ α ∈ J A α ) x \in ( \cap_{\alpha \in J }A_\alpha) x(αJAα)
所以 x ∈ ( ∩ α ∈ I A α ) ∩ ( ∩ α ∈ J A α ) x \in ( \cap_{\alpha \in I }A_\alpha) \cap ( \cap_{\alpha \in J }A_\alpha) x(αIAα)(αJAα)

所以: ( ∩ α ∈ I ∪ J A α ) ⊆ ( ∩ α ∈ I A α ) ∩ ( ∩ α ∈ J A α ) ( \cap_{\alpha \in I \cup J }A_\alpha)\subseteq ( \cap_{\alpha \in I }A_\alpha) \cap ( \cap_{\alpha \in J }A_\alpha) (αIJAα)(αIAα)(αJAα)

所以 ( ∩ α ∈ I A α ) ∩ ( ∩ α ∈ J A α ) = ( ∩ α ∈ I ∪ J A α ) ( \cap_{\alpha \in I }A_\alpha) \cap ( \cap_{\alpha \in J }A_\alpha) = ( \cap_{\alpha \in I \cup J }A_\alpha) (αIAα)(αJAα)=(αIJAα)

3.4.11

设 X 是一个集合,I 是一个不空的集合,并且对于每个 α ∈ I \alpha \in I αI A α A_\alpha Aα X X X 的一个子集。证明

X \ ∪ α ∈ I A α = ∩ α ∈ I ( X \ A α ) X \ ∩ α ∈ I A α = ∪ α ∈ I ( X \ A α ) X \backslash \cup_{\alpha \in I} A_\alpha = \cap_{\alpha \in I} (X \backslash A_\alpha)\\ X \backslash \cap_{\alpha \in I} A_\alpha = \cup_{\alpha \in I} (X \backslash A_\alpha) X\αIAα=αI(X\Aα)X\αIAα=αI(X\Aα)

(1) ∀ x ∈ X \ ∪ α ∈ I A α \forall x \in X \backslash \cup_{\alpha \in I} A_\alpha xX\αIAα x ∈ X x \in X xX 同时 ∀ α ∈ I , x ∉ A α \forall \alpha \in I, x \notin A_\alpha αI,x/Aα
所以: ∀ α ∈ I , x ∈ X \ A α \forall \alpha \in I, x \in X \backslash A_\alpha αI,xX\Aα
所以: x ∈ ∩ α ∈ I X \ A α x \in \cap_{\alpha \in I} X \backslash A_\alpha xαIX\Aα
所以:

X \ ∪ α ∈ I A α ⊆ ∩ α ∈ I ( X \ A α ) X \backslash \cup_{\alpha \in I} A_\alpha \subseteq \cap_{\alpha \in I} (X \backslash A_\alpha) X\αIAααI(X\Aα)

∀ x ∈ ∩ α ∈ I ( X \ A α ) \forall x \in \cap_{\alpha \in I} (X \backslash A_\alpha) xαI(X\Aα)
有: ∀ α ∈ I , x ∈ X \ A α \forall \alpha \in I, x \in X \backslash A_\alpha αI,xX\Aα
所以: x ∈ X x \in X xX 和 $ \forall \alpha \in I , x \notin A_\alpha$
所以 x ∉ ∪ α ∈ I A α x \notin \cup_{\alpha \in I} A_\alpha x/αIAα
所以 x ∈ X \ ∪ α ∈ I A α x \in X \backslash \cup_{\alpha \in I} A_\alpha xX\αIAα
所以
∩ α ∈ I ( X \ A α ) ⊆ X \ ∪ α ∈ I A α \cap_{\alpha \in I} (X \backslash A_\alpha) \subseteq X \backslash \cup_{\alpha \in I} A_\alpha αI(X\Aα)X\αIAα

所以:
∩ α ∈ I ( X \ A α ) = X \ ∪ α ∈ I A α \cap_{\alpha \in I} (X \backslash A_\alpha) = X \backslash \cup_{\alpha \in I} A_\alpha αI(X\Aα)=X\αIAα

(2) ∀ x ∈ X \ ∩ α ∈ I A α \forall x \in X \backslash \cap_{\alpha \in I} A_\alpha xX\αIAα
x ∈ X x \in X xX 同时 x ∉ ∩ α ∈ I A α x \notin \cap_{\alpha \in I} A_\alpha x/αIAα
所以 ∃ β ∈ I , x ∉ A β \exists \beta \in I, x \notin A_\beta βI,x/Aβ
所以 x ∈ X \ A β x \in X \backslash A_\beta xX\Aβ
所以 x ∈ ∪ α ∈ I X \ A α x \in \cup_{\alpha \in I} X \backslash A_\alpha xαIX\Aα
所以
X \ ∩ α ∈ I A α ⊆ ∪ α ∈ I ( X \ A α ) X \backslash \cap_{\alpha \in I} A_\alpha \subseteq \cup_{\alpha \in I} (X \backslash A_\alpha) X\αIAααI(X\Aα)

∀ x ∈ ∪ α ∈ I ( X \ A α ) \forall x \in \cup_{\alpha \in I} (X \backslash A_\alpha) xαI(X\Aα)
所以 ∃ β ∈ I , x ∈ X \ A β \exists \beta \in I , x \in X \backslash A_\beta βI,xX\Aβ
所以 x ∈ X , x ∉ A β x \in X, x \notin A_\beta xX,x/Aβ
所以 x ∉ ∩ α ∈ I A α x \notin \cap_{\alpha \in I} A_\alpha x/αIAα
所以 x ∈ X \ ∩ α ∈ I A α x \in X \backslash \cap_{\alpha \in I } A_\alpha xX\αIAα
所以
∪ α ∈ I ( X \ A α ) ⊆ X \ ∩ α ∈ I A α \cup_{\alpha \in I} (X \backslash A_\alpha) \subseteq X \backslash \cap_{\alpha \in I} A_\alpha αI(X\Aα)X\αIAα
所以
∪ α ∈ I ( X \ A α ) = X \ ∩ α ∈ I A α \cup_{\alpha \in I} (X \backslash A_\alpha) = X \backslash \cap_{\alpha \in I} A_\alpha αI(X\Aα)=X\αIAα

猜你喜欢

转载自blog.csdn.net/liyuanbhu/article/details/90315147
3.4