路径积分基本定理

在微积分中,积分基本定理告诉我们怎样定义积分,具体形式如下所示 ∫ a b F ′ ( x ) d x = F ( b ) − F ( a ) \int_a^b F^{\prime}(x)dx=F(b)-F(a) abF(x)dx=F(b)F(a)则向量场的路径积分定理如下所示:

定理1: 假定 C C C是一个由 r → ( t )   ( a ≤ t ≤ b ) \overrightarrow{r}(t)\text{ }(a\le t\le b) r (t) (atb)给定的平滑曲线。假定 f f f是一个函数,它的梯度向量 ∇ f \nabla f f在曲线 C C C中是连续的。此时则有 ∫ C ∇ f ⋅ d r → = f ( r → ( b ) ) − f ( r → ( a ) ) \int\limits _C \nabla f \cdot d \overrightarrow{r}=f(\overrightarrow{r}(b))-f(\overrightarrow{r}(a)) Cfdr =f(r (b))f(r (a))

其中 r → ( a ) \overrightarrow{r}(a) r (a)表示的是曲线 C C C的起始点, r → ( b ) \overrightarrow{r}(b) r (b)表示曲线 C C C的终止点。需要注意的是,该定理并没有指定函数的变量数量,因为这对定理来说并不重要。不管函数中变量的数量是多少,这个定理都成立。

证明: 以下证明是在三维空间中展开进行的,线积分公式如下所示: ∫ C ∇ f ⋅ d r → = ∫ a b ∇ f ( r → ( t ) ) ⋅ r → ′ ( t ) d t = ∫ a b ( ∂ f ∂ x d x d t + ∂ f ∂ y d y d t + ∂ f ∂ z ∂ z ∂ t ) d t \begin{aligned}\int\limits_{C}\nabla f\cdot d \overrightarrow{r}&=\int_a^b \nabla f(\overrightarrow{r}(t))\cdot \overrightarrow{r}^{\prime}(t)dt\\&=\int_a^b \left(\frac{\partial f}{\partial x}\frac{dx}{dt}+\frac{\partial f}{\partial y}\frac{d y}{d t}+\frac{\partial f}{\partial z}\frac{\partial z}{\partial t}\right)dt\end{aligned} Cfdr =abf(r (t))r (t)dt=ab(xfdtdx+yfdtdy+zftz)dt利用链式法则可以简化这个积分为 ∫ C ∇ f ⋅ d r → = ∫ a b ( ∂ f ∂ x d x d t + ∂ f ∂ y d y d t + ∂ f ∂ z d z d t ) d t = ∫ a b d d t [ f ( r → ( t ) ) ] d t \begin{aligned}\int\limits_{C}\nabla f \cdot d \overrightarrow{r}&=\int_a^b\left(\frac{\partial f}{\partial x}\frac{d x}{dt}+\frac{\partial f}{\partial y}\frac{dy}{dt}+\frac{\partial f}{\partial z}\frac{dz}{dt}\right)dt\\&=\int_a^b \frac{d}{dt}[f(\overrightarrow{r}(t))]dt\end{aligned} Cfdr =ab(xfdtdx+yfdtdy+zfdtdz)dt=abdtd[f(r (t))]dt使用微积分基本定理可知: ∫ C ∇ f ⋅ d r → = f ( r → ( b ) ) − f ( r → ( a ) ) \int\limits_{C}\nabla f \cdot d \overrightarrow{r}=f(\overrightarrow{r}(b))-f(\overrightarrow{r}(a)) Cfdr =f(r (b))f(r (a))

猜你喜欢

转载自blog.csdn.net/qq_38406029/article/details/124754957