从零到一之Volley

一、初识Volley

Volley是在2013年Google I/O大会上推出了一个新的网络通信框架。在它之前也有其他的网络通信方式,比如HttpURLConnection和HttpClient,它们的使用率非常高。但它们的使用方式较复杂,不进行封装的话容易产生许多冗余的代码。所以就出现了一些封装好的的网络通信框架,比如说AsyncHttpClient,它把HTTP所有的通信细节全部封装在了内部,我们只需要简单调用几行代码就可以完成通信操作了。再比如Universal-Image-Loader,它使得在界面上显示网络图片的操作变得极度简单,开发者不用关心如何从网络上获取图片,也不用关心开启线程、回收图片资源等细节,Universal-Image-Loader已经把一切都做好了。当然,Google工程师们也发现了这个问题,所以就有了这个强大的Volley网络通信框架,它集成了AsyncHttpClient和Universal-Image-Loader的优点。既可以像AsyncHttpClient一样非常简单地进行HTTP通信,也可以像Universal-Image-Loader一样轻松加载网络上的图片。在性能上也有了很大的提高。它的设计目标就是非常适合去进行数据量不大,但通信频繁的网络操作,而对于大数据量的网络操作,比如说下载文件等,Volley的表现就会非常糟糕。

二、从零开始探索源码

官方文档给了我们一张图:官方文档地址(https://developer.android.com/training/volley/simple.html#send)

这张图表达了这个Volley背后的整个工作过程


一开始我们先对这个图进行一个大概的有个印象就行了,接下来我们需要通过源码的一步步分析后对这个图才能深刻理解。

(一)首先我们先看一下Volley这个类,它的代码短小而简洁:

public class Volley {

    private static final String DEFAULT_CACHE_DIR = "volley";

    public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
        File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);
        String userAgent = "volley/0";
        try {
            String packageName = context.getPackageName();
            PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
            userAgent = packageName + "/" + info.versionCode;
        } catch (NameNotFoundException e) {
        }
(1)      if (stack == null) {
            if (Build.VERSION.SDK_INT >= 9) {
                stack = new HurlStack();
            } else {
                // Prior to Gingerbread, HttpUrlConnection was unreliable.
                // See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html
                stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
            }
        }
        Network network = new BasicNetwork(stack);
        RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
        queue.start();
        return queue;
    }

    public static RequestQueue newRequestQueue(Context context) {
        return newRequestQueue(context, null);
    }
}

这里面只有两个方法,后一个方法只是调用了newRequestQueue()的方法重载,并给第二个参数传入null。

重点看第一个方法的内容:开始获取包的一些内容(包名等等),在序号1处我们可以看到当stack为空时,就会创建一个HurStack的实例对象。否则就会创建一个HTTPClientStack的实例。这是根据版本来进行区分的,具体原因看下面的拓展部分。

在这个HurStack类里的一个方法里我们就可以明显的看到它的内部是使用HttpURLConnection进行网络通讯的。

扫描二维码关注公众号,回复: 146493 查看本文章
 protected HttpURLConnection createConnection(URL url) throws IOException {
        HttpURLConnection connection = (HttpURLConnection) url.openConnection();
        // Workaround for the M release HttpURLConnection not observing the
        connection.setInstanceFollowRedirects(HttpURLConnection.getFollowRedirects());
        return connection;
    }
HttpClientStack的内部则是使用HttpClient进行网络通讯的。通过构造方法可以明显的看出来
public HttpClientStack(HttpClient client) {
        mClient = client;
    }

***这里简单的解释一下这两种方式的不同

在Android 2.2版本之前,HttpClient拥有较少的bug,因此使用它是最好的选择。而在Android 2.3版本及以后,HttpURLConnection则是最佳的选择。它的API简单,体积较小,因而非常适用于Android项目。压缩和缓存机制可以有效地减少网络访问的流量,在提升速度和省电方面也起到了较大的作用。对于新的应用程序应该更加偏向于使用HttpURLConnection,因为在以后的工作当中我们也会将更多的时间放在优化HttpURLConnection上面。

(二)创建好了HttpStack对象后,创建了NetWork对象,它是一个接口。

public interface Network {
     //Performs the specified request.
    public NetworkResponse performRequest(Request<?> request) throws VolleyError;
}

所以我们需要创建了一个它的实现类BasicNetWork的实例对象。那么这个BasicNetWork主要就是它是用于根据传入的HttpStack对象来处理网络请求的。下面是它的构造方法。

  public BasicNetwork(HttpStack httpStack, ByteArrayPool pool) {
        mHttpStack = httpStack;
        mPool = pool;
    }

(三)接着就new了一个RequestQueue的对象,并调用了它的start()方法,是不是很熟悉,这里我们就会猜测肯定和线程有关系。那么这个方法里具体做了什么呢?

   public void start() {
        stop();  // Make sure any currently running dispatchers are stopped.
        // Create the cache dispatcher and start it.
        mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
        mCacheDispatcher.start();
        // Create network dispatchers (and corresponding threads) up to the pool size.
        for (int i = 0; i < mDispatchers.length; i++) {
            NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
                    mCache, mDelivery);
            mDispatchers[i] = networkDispatcher;
            networkDispatcher.start();
        }
    }

这里先创建了CacheDispatcher的实例,并调用了它的start()方法。接着进行了一个循环创建NetworkDispatcher的实例,也调用了它的start()方法、正如我们所猜测的那样,这两个类都是线程类。都继承了Thread类,CacheDispatcher是缓存线程,NetworkDispatcher是网络请求线程默认情况下for循环会执行四次,也就是说当调用了Volley.newRequestQueue(context)之后,就会有五个线程一直在后台运行,不断等待网络请求的到来。

(四)得到了RequestQueue之后,我们只需要构建出相应的Request,然后调用RequestQueue的add()方法将Request传入就可以完成网络请求操作了。那么add()里面到底做了什么能实现这个网络请求操作功能呢,接下来就来一探究竟。

   /**
     * Adds a Request to the dispatch queue.
     * @param request The request to service
     * @return The passed-in request
     */
    public <T> Request<T> add(Request<T> request) {
        // Tag the request as belonging to this queue and add it to the set of current requests.
        request.setRequestQueue(this);
        synchronized (mCurrentRequests) {
            mCurrentRequests.add(request);
        }

        // Process requests in the order they are added.
        request.setSequence(getSequenceNumber());
        request.addMarker("add-to-queue");

        // If the request is uncacheable, skip the cache queue and go straight to the network.
    (1)    if (!request.shouldCache()) {
            mNetworkQueue.add(request);
            return request;
        }

        // Insert request into stage if there's already a request with the same cache key in flight.
        synchronized (mWaitingRequests) {
            String cacheKey = request.getCacheKey();
            if (mWaitingRequests.containsKey(cacheKey)) {
                // There is already a request in flight. Queue up.
                Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);
                if (stagedRequests == null) {
                    stagedRequests = new LinkedList<Request<?>>();
                }
                stagedRequests.add(request);
                mWaitingRequests.put(cacheKey, stagedRequests);
                if (VolleyLog.DEBUG) {
                    VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);
                }
            } else {
                // Insert 'null' queue for this cacheKey, indicating there is now a request in
                // flight.
                mWaitingRequests.put(cacheKey, null);
       (2)         mCacheQueue.add(request);
            }
            return request;
        }
    }

首先它会先判断当前的请求可不可以加入缓存,如何可以就会把加入缓存队列(序号2处)。如果不可以就直接加入网络请求队列里,然后返回请求。但默认情况下都是可以加入缓存的,这里的不可加入缓存是由Request的setShouldCache()控制的。

(五)那么既然默认是可加入缓存队列的,那么就表示大部分情况下都会被加入缓存队列。加入之后进行了什么操作呢。这又要回到我之前说的的缓存线程CacheDispatcher了。既然是线程就看看它的run()方法进行了什么操作。

 public void run() {
        if (DEBUG) VolleyLog.v("start new dispatcher");
        Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);

        // Make a blocking call to initialize the cache.
        mCache.initialize();
public class CacheDispatcher extends Thread {  
    .......
 while (true) {
            try {
                // Get a request from the cache triage queue, blocking until
                // at least one is available.
                final Request<?> request = mCacheQueue.take();
                request.addMarker("cache-queue-take");

                // If the request has been canceled, don't bother dispatching it.
                if (request.isCanceled()) {
                    request.finish("cache-discard-canceled");
                    continue;
                }

                // Attempt to retrieve this item from cache.
                Cache.Entry entry = mCache.get(request.getCacheKey());
    (1)            if (entry == null) {
                    request.addMarker("cache-miss");
                    // Cache miss; send off to the network dispatcher.
                    mNetworkQueue.put(request);
                    continue;
                }

                // If it is completely expired, just send it to the network.
       (2)         if (entry.isExpired()) {
                    request.addMarker("cache-hit-expired");
                    request.setCacheEntry(entry);
                    mNetworkQueue.put(request);
                    continue;
                }

                // We have a cache hit; parse its data for delivery back to the request.
                request.addMarker("cache-hit");
              (3)     Response<?> response = request.parseNetworkResponse(
                        new NetworkResponse(entry.data, entry.responseHeaders));
                request.addMarker("cache-hit-parsed");

                if (!entry.refreshNeeded()) {
                    // Completely unexpired cache hit. Just deliver the response.
                    mDelivery.postResponse(request, response);
                } else {
                    // Soft-expired cache hit. We can deliver the cached response,
                    // but we need to also send the request to the network for
                    // refreshing.
                    request.addMarker("cache-hit-refresh-needed");
                    request.setCacheEntry(entry);

                    // Mark the response as intermediate.
                    response.intermediate = true;

                    // Post the intermediate response back to the user and have
                    // the delivery then forward the request along to the network.
                    mDelivery.postResponse(request, response, new Runnable() {
                        @Override
                        public void run() {
                            try {
                                mNetworkQueue.put(request);
                            } catch (InterruptedException e) {
                                // Not much we can do about this.
                            }
                        }
                    });
                }

            } catch (InterruptedException e) {
                // We may have been interrupted because it was time to quit.
                if (mQuit) {
                    return;
                }
                continue;
            }
        }
    }

从这个方法里看到一个where循环,说明这个线程一直都在运行,等待着缓存请求的进来。它首先会先从缓存中取出这个请求,如果请求为空,也就是请求丢失,那它就会将它加入网络请求(序号1处)。如何它的请求过期了,也会将它加入网络请求(序号2)。否则就认为不需要重新发送网络请求,直接使用缓存中的数据即可,之后对数据进行解析了(序号3)。再之后就是对解析出的数据进行回调。

(六)接下来我们先看一下NetWorkDispatcher和BasicNetWork是如何处理网络请求队列

public class NetworkDispatcher extends Thread {
.....
   public NetworkDispatcher(BlockingQueue<Request<?>> queue,
            Network network, Cache cache,
            ResponseDelivery delivery) {
        mQueue = queue;
        mNetwork = network;
        mCache = cache;
        mDelivery = delivery;
    }
@Override
    public void run() {
        Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
    (1)    while (true) {
            long startTimeMs = SystemClock.elapsedRealtime();
            Request<?> request;
            try {
                // Take a request from the queue.
                request = mQueue.take();
            } catch (InterruptedException e) {
                // We may have been interrupted because it was time to quit.
                if (mQuit) {
                    return;
                }
                continue;
            }

            try {
                request.addMarker("network-queue-take");

                // If the request was cancelled already, do not perform the
                // network request.
                if (request.isCanceled()) {
                    request.finish("network-discard-cancelled");
                    continue;
                }

                addTrafficStatsTag(request);

                // Perform the network request.
         (2)       NetworkResponse networkResponse = mNetwork.performRequest(request);
                request.addMarker("network-http-complete");

                // If the server returned 304 AND we delivered a response already,
                // we're done -- don't deliver a second identical response.
                if (networkResponse.notModified && request.hasHadResponseDelivered()) {
                    request.finish("not-modified");
                    continue;
                }

                // Parse the response here on the worker thread.
                Response<?> response = request.parseNetworkResponse(networkResponse);
                request.addMarker("network-parse-complete");

                // Write to cache if applicable.
                // TODO: Only update cache metadata instead of entire record for 304s.
                if (request.shouldCache() && response.cacheEntry != null) {
                    mCache.put(request.getCacheKey(), response.cacheEntry);
                    request.addMarker("network-cache-written");
                }

                // Post the response back.
                request.markDelivered();
                mDelivery.postResponse(request, response);
            } catch (VolleyError volleyError) {
                volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - startTimeMs);
                parseAndDeliverNetworkError(request, volleyError);
            } catch (Exception e) {
                VolleyLog.e(e, "Unhandled exception %s", e.toString());
                VolleyError volleyError = new VolleyError(e);
                volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - startTimeMs);
                mDelivery.postError(request, volleyError);
            }
        }
    }

在这段代码中我们可以看到有个while(true)循环,网络请求线程也在不断的进行。之后还会调用NetWork的performRequest()方法来发送网络请求,而Network是接口,所以需要它的实现类BasicNetwork,转到它的performRequest()方法来看看如何实现的。

 @Override
    public NetworkResponse performRequest(Request<?> request) throws VolleyError {
        long requestStart = SystemClock.elapsedRealtime();
        while (true) {
            HttpResponse httpResponse = null;
            byte[] responseContents = null;
            Map<String, String> responseHeaders = Collections.emptyMap();
            try {
                // Gather headers.
                Map<String, String> headers = new HashMap<String, String>();
                addCacheHeaders(headers, request.getCacheEntry());
        (1)        httpResponse = mHttpStack.performRequest(request, headers);
                StatusLine statusLine = httpResponse.getStatusLine();
                int statusCode = statusLine.getStatusCode();

                responseHeaders = convertHeaders(httpResponse.getAllHeaders());
                // Handle cache validation.
                if (statusCode == HttpStatus.SC_NOT_MODIFIED) {

                    Entry entry = request.getCacheEntry();
                    if (entry == null) {
                        return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, null,
                                responseHeaders, true,
                                SystemClock.elapsedRealtime() - requestStart);
                    }

                    // A HTTP 304 response does not have all header fields. We
                    // have to use the header fields from the cache entry plus
                    // the new ones from the response.
                    // http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5
                    entry.responseHeaders.putAll(responseHeaders);
                    return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, entry.data,
                            entry.responseHeaders, true,
                            SystemClock.elapsedRealtime() - requestStart);
                }

                // Some responses such as 204s do not have content.  We must check.
                if (httpResponse.getEntity() != null) {
                  responseContents = entityToBytes(httpResponse.getEntity());
                } else {
                  // Add 0 byte response as a way of honestly representing a
                  // no-content request.
                  responseContents = new byte[0];
                }

                // if the request is slow, log it.
                long requestLifetime = SystemClock.elapsedRealtime() - requestStart;
                logSlowRequests(requestLifetime, request, responseContents, statusLine);

                if (statusCode < 200 || statusCode > 299) {
                    throw new IOException();
                }
                return new NetworkResponse(statusCode, responseContents, responseHeaders, false,
                        SystemClock.elapsedRealtime() - requestStart);
           .......
                }
            }
        }
    }

这段方法中大多都是一些网络请求细节方面的东西,需要注意的是在(1)处调用了HttpStack的performRequest()方法,这里的HttpStack就是在一开始调用newRequestQueue()方法是创建的实例,默认情况下如果系统版本号大于9就创建的HurlStack对象,否则创建HttpClientStack对象。前面已经说过,这两个对象的内部实际就是分别使用HttpURLConnection和HttpClient来发送网络请求的,之后会将服务器返回的数据组装成一个NetworkResponse对象进行返回。

在NetworkDispatcher中收到了NetworkResponse这个返回值后又会调用Request的parseNetworkResponse()方法来解析NetworkResponse中的数据,以及将数据写入到缓存,这个方法的实现是交给Request的子类来完成的,因为不同种类的Request解析的方式也肯定不同。

(七)在解析完了NetworkResponse中的数据之后,又会调用ExecutorDelivery的postResponse()方法来回调解析出的数据,代码如下所示:

public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {  
    request.markDelivered();  
    request.addMarker("post-response");  
    mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));  
}  
其中,在mResponsePoster的execute()方法中传入了一个ResponseDeliveryRunnable对象,就可以保证该对象中的run()方法就是在主线程当中运行的了,我们看下run()方法中的代码是什么样的:
private class ResponseDeliveryRunnable implements Runnable {  
    private final Request mRequest;  
    private final Response mResponse;  
    private final Runnable mRunnable;  
  
    public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) {  
        mRequest = request;  
        mResponse = response;  
        mRunnable = runnable;  
    }  
  
    @SuppressWarnings("unchecked")  
    @Override  
    public void run() {  
        // If this request has canceled, finish it and don't deliver.  
        if (mRequest.isCanceled()) {  
            mRequest.finish("canceled-at-delivery");  
            return;  
        }  
        // Deliver a normal response or error, depending.  
        if (mResponse.isSuccess()) {  
    (1)        mRequest.deliverResponse(mResponse.result);  
        } else {  
            mRequest.deliverError(mResponse.error);  
        }  
        // If this is an intermediate response, add a marker, otherwise we're done  
        // and the request can be finished.  
        if (mResponse.intermediate) {  
            mRequest.addMarker("intermediate-response");  
        } else {  
            mRequest.finish("done");  
        }  
        // If we have been provided a post-delivery runnable, run it.  
        if (mRunnable != null) {  
            mRunnable.run();  
        }  
   }  
}  
代码中可以看见调用了Request的deliverResponse()方法,有没有感觉很熟悉?没错,这个就是我们在自定义Request时需要重写的另外一个方法,每一条网络请求的响应都是回调到这个方法中,最后我们再在这个方法中将响应的数据回调到Response.Listener的onResponse()方法中就可以了。好了,到这里我们就把Volley的完整执行流程全部梳理了一遍。

其中蓝色部分代表主线程,绿色部分代表缓存线程,橙色部分代表网络线程。我们在主线程中调用RequestQueue的add()方法来添加一条网络请求,这条请求会先被加入到缓存队列当中,如果发现可以找到相应的缓存结果就直接读取缓存并解析,然后回调给主线程。如果在缓存中没有找到结果,则将这条请求加入到网络请求队列中,然后处理发送HTTP请求,解析响应结果,写入缓存,并回调主线程。

这样我们Volley的实现原理有了一个清晰的认识了,下篇准备手写一个Volley框架来加深对它的理解。

猜你喜欢

转载自blog.csdn.net/king_guoguo/article/details/79794230