用纯C语言分别实现增量式与位置式的PID自整定算法

对于增量式PID自整定算法,C语言代码如下:

#include <stdio.h>

#define SAMPLE_TIME 0.1     // 采样时间
#define KP_DEFAULT 0.5      // 比例系数默认值
#define KI_DEFAULT 0.2      // 积分系数默认值
#define KD_DEFAULT 0.1      // 微分系数默认值
#define TAU_DEFAULT 10.0    // 积分时间常数默认值
#define N_DEFAULT 10.0      // 微分时间常数默认值

// PID自整定函数
void pid_auto_tune(double* kp, double* ki, double* kd, double* tau, double* n, double* process_value, double* setpoint) {
    double delta = 0.1;     // 步进大小
    double tolerance = 0.1; // 容忍度
    double prev_error = 0;  // 上一次误差
    double integral = 0;    // 积分项
    double derivative = 0;  // 微分项
    double output;          // 控制器输出
    double overshoot;       // 超调量
    double process_value1, process_value2, process_value3;
    
    // 初始化参数
    *kp = KP_DEFAULT;
    *ki = KI_DEFAULT;
    *kd = KD_DEFAULT;
    *tau = TAU_DEFAULT;
    *n = N_DEFAULT;

    // 开始自整定
    while (1) {
        // 增加比例系数
        *kp += delta;
        // 计算控制器输出
        output = *kp * (*setpoint - *process_value);
        // 计算误差
        double error = *setpoint - *process_value;
        // 计算积分项
        integral += error * SAMPLE_TIME;
        // 计算微分项
        derivative = (error - prev_error) / SAMPLE_TIME;
        prev_error = error;
        // 计算控制器输出
        output = *kp * error + *ki * integral + *kd * derivative;
        // 更新过程值
        process_value3 = process_value2;
        process_value2 = process_value1;
        process_value1 = *process_value;
        *process_value += output;
        // 计算超调量
        overshoot = (*process_value1 - *setpoint) / (*setpoint - *process_value2);
        // 判断是否达到稳态
        if (overshoot > 1 + tolerance) {
            *kp -= 2 * delta;
            break;
        }
    }

    // 重新开始自整定
    while (1) {
        // 增加积分时间常数
        *tau += delta;
        // 增加微分时间常数
        *n += delta;
        // 计算控制器输出
        output = (*kp * (*setpoint - *process_value)
            + *ki * (1 + *tau / SAMPLE_TIME) * integral
            - *kd * *n / (*tau + SAMPLE_TIME) * derivative);
        // 更新过程值
        process_value3 = process_value2;
        process_value2 = process_value1;
        process_value1 = *process_value;
        *process_value += output;

        // 计算超调量
        overshoot = (*process_value1 - *setpoint) / (*setpoint - *process_value2);
        // 判断是否达到稳态
        if (overshoot > 1 + tolerance) {
                *tau -= 2 * delta;
                break;
        }
    }

    // 计算微分系数
    *kd = *tau * *kp / (*n * SAMPLE_TIME);
}

int main() {
    double kp, ki, kd, tau, n, process_value, setpoint;
    // 初始化过程值和设定值
    process_value = 0;
    setpoint = 1;

    // 进行自整定
    pid_auto_tune(&kp, &ki, &kd, &tau, &n, &process_value, &setpoint);

    // 输出结果
    printf("kp = %lf\n", kp);
    printf("ki = %lf\n", ki);
    printf("kd = %lf\n", kd);

    return 0;
}

位置式PID控制是一种常用的控制方法,可以实现给定值与实际值之间的闭环控制。下面是使用C语言编写的一个位置式PID自整定算法的代码,包含详细的注释:

#include <stdio.h>

// 位置式PID自整定算法
float position_pid_autotune(float (*process_variable)(float), void (*control_variable)(float), float setpoint) {
    float kp = 0, ki = 0, kd = 0; // 初始化PID系数
    float error = 0, last_error = 0, sum_error = 0; // 初始化误差和变量
    float output = 0; // 初始化控制输出

    // 自整定过程
    for (int i = 0; i < 1000; i++) {
        float pv = process_variable(setpoint); // 获取当前过程变量
        error = setpoint - pv; // 计算当前误差
        sum_error += error; // 累计误差
        float d_error = error - last_error; // 计算误差变化率
        last_error = error; // 更新上一次误差

        // 更新PID系数
        kp += 0.1 * error;
        ki += 0.0001 * sum_error;
        kd += 0.01 * d_error;

        // 计算控制输出
        output = kp * error + ki * sum_error + kd * d_error;
        control_variable(output);
    }

    // 返回得到的PID系数中的Kp值
    return kp;
}

// 过程变量函数
float process_variable(float setpoint) {
    // 这里模拟获取实际值,返回一个随机数
    return (float)rand() / RAND_MAX * setpoint;
}

// 控制变量函数
void control_variable(float output) {
    // 这里模拟控制输出,输出结果打印在控制台上
    printf("Output: %f\n", output);
}

int main() {
    float setpoint = 50.0; // 设定值
    float kp = position_pid_autotune(process_variable, control_variable, setpoint); // 自整定,得到Kp系数
    printf("Kp: %f\n", kp); // 输出得到的Kp系数
    return 0;
}

这个代码实现了一个位置式PID自整定算法,它包括了两个函数process_variablecontrol_variable,分别模拟了获取实际值和控制输出的过程。在position_pid_autotune函数中,首先初始化了PID系数,误差和输出等变量。接着使用一个循环,对于设定值,获取当前的实际值,计算当前的误差,累计误差,计算误差变化率,更新PID系数,计算控制输出,并调用control_variable函数进行控制输出。

在自整定过程中,我们通过不断更新Kp系数,使得误差能够快速收敛到0,从而得到一个适合当前系统的PID.

下面是另一个版本的位置式PID自整定算法,实现方式略有不同,但同样包含详细的注释。

#include <stdio.h>

// 位置式PID自整定算法
float position_pid_autotune(float (*process_variable)(void), void (*control_variable)(float), float setpoint) {
    float kp = 0, ki = 0, kd = 0; // 初始化PID系数
    float error = 0, last_error = 0, sum_error = 0; // 初始化误差和变量
    float output = 0; // 初始化控制输出
    float delta_t = 0.1; // 控制时间步长
    float tolerance = 0.1; // 允许的误差范围
    int iterations = 0; // 循环次数

    // 执行自整定过程
    while (1) {
        float pv = process_variable(); // 获取当前过程变量
        error = setpoint - pv; // 计算当前误差
        sum_error += error; // 累计误差
        float d_error = (error - last_error) / delta_t; // 计算误差变化率
        last_error = error; // 更新上一次误差

        // 更新PID系数
        kp += 0.1 * error;
        ki += 0.01 * sum_error;
        kd += 0.01 * d_error;

        // 计算控制输出
        output = kp * error + ki * sum_error + kd * d_error;
        control_variable(output);

        // 检查是否满足误差范围,如果满足则跳出循环
        if (error < tolerance && error > -tolerance) {
            break;
        }

        iterations++; // 增加循环次数
        if (iterations >= 1000) { // 如果循环次数超过1000,跳出循环
            break;
        }
    }

    // 返回得到的PID系数中的Kp值
    return kp;
}

// 过程变量函数
float process_variable() {
    // 这里模拟获取实际值,返回一个随机数
    return (float)rand() / RAND_MAX * 100.0;
}

// 控制变量函数
void control_variable(float output) {
    // 这里模拟控制输出,输出结果打印在控制台上
    printf("Output: %f\n", output);
}

int main() {
    float setpoint = 50.0; // 设定值
    float kp = position_pid_autotune(process_variable, control_variable, setpoint); // 自整定,得到Kp系数
    printf("Kp: %f\n", kp); // 输出得到的Kp系数
    return 0;
}

这个代码实现了一个类似的位置式PID自整定算法,它同样包括了process_variablecontrol_variable函数,以及自整定过程中使用的PID系数、误差和输出等变量。不同之处在于,这个算法使用了一个while循环,而不是for.

猜你喜欢

转载自blog.csdn.net/wangningyu/article/details/129101032