【考研数学公式】11道基本定理

设f(x)在[a,b]上连续,则

定理1(有界定理) ∣ f ( x ) ∣ ≤ M    ( M > 0 ) \lvert f(x) \rvert\leq M \ \ (M>0) f(x)∣M  (M>0)

定理2(最值定理) m ≤ f ( x ) ≤ M m \leq f(x) \leq M mf(x)M,其中m,M分别为f(x)在 [a, b] 上的最小值与最大值

定理3(介值定理)当 m ≤ μ ≤ M 时, ∃ ξ ϵ [ a , b ] ,使得 f ( ξ ) = μ m \leq \mu \leq M\text{时,} \exists \xi \epsilon{[a,b]}\text{,使得}f(\xi)=\mu mμM时,ξϵ[a,b],使得f(ξ)=μ

定理4(零点定理)当 f ( a ) ⋅ f ( b ) < 0 时, ∃ ξ ϵ ( a , b ) ,使得 f ( ξ ) = 0 f(a)\cdot f(b)<0\text{时,}\exists \xi\epsilon(a,b)\text{,使得}f(\xi)=0 f(a)f(b)<0时,ξϵ(a,b),使得f(ξ)=0

定理5(费马定理)

设f(x)满足在 x 0 点处 { (1)可导, (2)取极值, 则 f ′ ( x 0 ) = 0 \text{设f(x)满足在}x_0\text{点处} \begin{cases} \text{(1)可导,}\\ \text{(2)取极值,} \end{cases}\text{则}f'(x_0)=0 f(x)满足在x0点处{ (1)可导,(2)取极值,f(x0)=0

定理6(罗尔定理)

设f(x)满足 { (1)[a, b]上连续, (2)(a, b)内可导, (3)f(a) = f(b), 则, ∃ ξ ϵ ( a , b ) , 使得 f ′ ( ξ ) = 0 \text{设f(x)满足}\begin{cases} \text{(1)[a, b]上连续,} \\ \text{(2)(a, b)内可导,} \\ \text{(3)f(a) = f(b),} \end{cases}\text{则,}\exists\xi\epsilon(a,b),\text{使得}f'(\xi)=0 f(x)满足 (1)[a, b]上连续,(2)(a, b)内可导,(3)f(a) = f(b)则,ξϵ(a,b),使得f(ξ)=0

定理7(拉格朗日中值定理)

设f(x)满足 { (1)[a, b]上连续, (2)(a, b)内可导, 则, ∃ ξ ϵ ( a , b ) ,使得 \text{设f(x)满足}\begin{cases} \text{(1)[a, b]上连续,} \\ \text{(2)(a, b)内可导,} \end{cases}\text{则,}\exists\xi\epsilon(a,b) \text{,使得} f(x)满足{ (1)[a, b]上连续,(2)(a, b)内可导,则,ξϵ(a,b),使得
f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba)

或者写成

f ′ ( ξ ) = f ( b ) − f ( a ) b − a f'(\xi)=\frac{f(b)-f(a)}{b-a} f(ξ)=baf(b)f(a)

定理8(柯西中值定理)

设 f ( x ) 满足 { (1)[a, b]上连续, (2)(a, b)内可导, (3) g ′ ( x ) ≠ 0 , 则, ∃ ξ ϵ ( a , b ) , 使得 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) . \text{设}f(x)\text{满足}\begin{cases} \text{(1)[a, b]上连续,} \\ \text{(2)(a, b)内可导,} \\ \text{(3)}g'(x)\ne0, \end{cases}\text{则,}\exists\xi\epsilon(a,b),\text{使得} \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}. f(x)满足 (1)[a, b]上连续,(2)(a, b)内可导,(3)g(x)=0,则,ξϵ(a,b),使得g(b)g(a)f(b)f(a)=g(ξ)f(ξ).

定理9(泰勒公式)

(1)带拉格朗日余项的n阶泰勒公式

设f(x)在点 x 0 x_0 x0的某个领域内有n+1阶导数存在,则对该领域内的任意点x均有
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1  , \begin{array}{l} f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+\cdots +\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n \\ +\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\text{ ,} \end{array} f(x)=f(x0)+f(x0)(xx0)+2!1f′′(x0)(xx0)2++n!1f(n)(x0)(xx0)n+(n+1)!f(n+1)(ξ)(xx0)n+1 
其中 ξ 介于 x , x 0 之间 \text{其中}\xi\text{介于}x,x_0\text{之间} 其中ξ介于x,x0之间

(2)带佩亚诺余项的n阶泰勒公式

设f(x)在点 x 0 x_0 x0处n阶可导,则存在 x 0 x_0 x0的一个领域,对于该领域中的任一点,成立
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + o ( ( x − x 0 ) n ) . \begin{array}{l} f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+\cdots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n \\ \\ +o((x-x_0)^n). \end{array} f(x)=f(x0)+f(x0)(xx0)+2!1f′′(x0)(xx0)2++n!1f(n)(x0)(xx0)n+o((xx0)n).

定理10(导数零点定理)

设f(x)在[a,b]上可导,当 f + ′ ( a ) ⋅ f − ′ ( b ) < 0  时, ∃ ξ ϵ ( a , b ) ,使得 f ′ ( ξ ) = 0 f'_+(a)\cdot f'_-(b)< 0 \text{ 时,}\exists \xi\epsilon(a,b)\text{,使得}f'(\xi)=0 f+(a)f(b)<0 时,ξϵ(a,b),使得f(ξ)=0

定理11(导数介值定理)

设f(x)在[a,b]上可导,若 f + ′ ( a ) ≠ f − ′ ( b ) , 则 ∀ μ 介于 f + ′ ( a ) 与 f − ′ ( b ) 之间, ∃ ξ ϵ ( a , b ) ,使得 f ′ ( ξ ) = μ f'_+(a)\ne f'_-(b)\text{, 则}\forall \mu\text{介于}f'_+(a)\text{与}f'_-(b)\text{之间,} \exists \xi\epsilon(a,b)\text{,使得}f'(\xi)=\mu f+(a)=f(b) μ介于f+(a)f(b)之间,ξϵ(a,b),使得f(ξ)=μ

麦克劳林公式( x 0 = 0 x_0=0 x0=0时)

f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\cdots+\frac{f^{(n)}(0)}{n!}x^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1}\\ f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\cdots+\frac{f^{(n)}(0)}{n!}x^n+o(x^n) f(x)=f(0)+f(0)x+2!f′′(0)x2++n!f(n)(0)xn+(n+1)!f(n+1)(ξ)xn+1f(x)=f(0)+f(0)x+2!f′′(0)x2++n!f(n)(0)xn+o(xn)

几个重要函数的麦克劳林展开式
e u = 1 + u + 1 2 u 2 + ⋯ + 1 n ! u n + o ( u n ) e^u=1+u+\frac{1}{2}u^2+\cdots+\frac{1}{n!}u^n+o(u^n) eu=1+u+21u2++n!1un+o(un)
s i n u = u − u 3 3 ! + ⋯ + ( − 1 ) n u 2 n + 1 ( 2 n + 1 ) ! + o ( u 2 n + 1 ) sinu=u-\frac{u^3}{3!}+\cdots+(-1)^n\frac{u^{2n+1}}{(2n+1)!}+o(u^{2n+1}) sinu=u3!u3++(1)n(2n+1)!u2n+1+o(u2n+1)
c o s u = u − u 2 2 ! + u 4 4 ! + ⋯ + ( − 1 ) n u 2 n ( 2 n ) ! + o ( u 2 n ) cosu=u-\frac{u^2}{2!}+\frac{u^4}{4!}+\cdots+(-1)^n\frac{u^{2n}}{(2n)!}+o(u^{2n}) cosu=u2!u2+4!u4++(1)n(2n)!u2n+o(u2n)
1 1 − u = 1 + u + u 2 + ⋯ + u n + o ( u n ) \frac{1}{1-u}=1+u+u^2+\cdots+u^n+o(u^n) 1u1=1+u+u2++un+o(un)
1 1 + u = 1 − u + u 2 − ⋯ + ( − 1 ) n u n + o ( u n ) \frac{1}{1+u}=1-u+u^2-\cdots+(-1)^nu^n+o(u^n) 1+u1=1u+u2+(1)nun+o(un)
l n ( 1 + u ) = u − u 2 2 + u 3 3 − ⋯ + ( − 1 ) n u n + 1 ( n + 1 ) + o ( u n + 1 ) ln(1+u)=u-\frac{u^2}{2}+\frac{u^3}{3}-\cdots+(-1)^n\frac{u^{n+1}}{(n+1)}+o(u^{n+1}) ln(1+u)=u2u2+3u3+(1)n(n+1)un+1+o(un+1)
( 1 + u ) α = 1 + α u + α ( α − 1 ) 2 ! u 2 + ⋯ + α ( α − 1 ) ⋯ ( α − n + 1 ) n ! u n + o ( u n ) (1+u)^\alpha=1+\alpha u+\frac{\alpha(\alpha-1)}{2!}u^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}u^n+o(u^n) (1+u)α=1+αu+2!α(α1)u2++n!α(α1)(αn+1)un+o(un)

猜你喜欢

转载自blog.csdn.net/Little_Matches/article/details/122607067