CNN:(局部感知+权共享机制:让一组神经元使用相同的连接权)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_27923041/article/details/78407176
提出:全连接的结构下会引起参数数量的膨胀,容易过拟合且局部最优。图像中有固有的局部模式可以利用,所以,提出了CNN,并不是所有上下层神经元都能直接相连,而是通过“卷积核”作为中介。同一个卷积核在所有图像内都是共享的,图像通过卷积操作后仍然保留原来的位置关系。
复合多个“卷积层”和“采样层”对输入信号进行加工,然后再连接层实现与输出目标之间的映射。多层的目的:一层卷积学到的特征往往是局部的,层数越高,学到的特征就越全局化。
CNN两大神器:
1、局部感知:一般认为图像的空间联系是局部的像素联系比较密切,而距离较远的像素相关性较弱,因此,每个神经元没必要对全局图像进行感知,只要对局部进行感知,然后在更高层将局部的信息综合起来得到全局信息。 利用卷积层实现:(特征映射,每个特征映射是一个神经元阵列):从上一层通过局部卷积滤波器提取局部特征。卷积层紧跟着一个用来求局部平均与二次提取的计算层,这种二次特征提取结构减少了特征分辨率。
2、参数共享:在局部连接中,每个神经元的参数都是一样的,即:同一个卷积核在图像中都是共享的。(理解:卷积操作实际是在提取一个个局部信息,而局部信息的一些统计特性和其他部分是一样的,也就意味着这部分学到的特征也可以用到另一部分上。所以对图像上的所有位置,都能使用同样的学习特征。)卷积核共享有个问题:提取特征不充分,可以通过增加多个卷积核来弥补,可以学习多种特征。
3、采样(池化)层:在通过卷积得到特征后,希望利用这些特征进行分类。基于局部相关性原理进行亚采样,在减少数据量的同时保留有用信息。 (压缩数据和参数的量,减少过拟合)(max-polling 和average-polling)
可用BP算法训练,训练中,无论是卷积层还是采样层,每一组神经元都是用相同的连接权。
优点:限制了参数的个数并挖掘了局部结构的这个特点,减少了复杂度。
(CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。由于CNN的特征检测层通过训练数据进行学习,所以在使用CNN时,避免了显示的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习,这也是卷积网络相对于神经元彼此相连网络的一大优势。卷积神经网络以其局部权值共享的特殊结构在语音识别和图像处理方面有着独特的优越性,其布局更接近于实际的生物神经网络,权值共享降低了网络的复杂性,特别是多维输入向量的图像可以直接输入网络这一特点避免了特征提取和分类过程中数据重建的复杂度)

猜你喜欢

转载自blog.csdn.net/qq_27923041/article/details/78407176