搜索引擎架构与流程

全网搜索引擎架构与流程

全网搜索的宏观架构长啥样?

全网搜索的宏观流程是怎么样的?

全网搜索引擎的宏观架构

全网搜索引擎的宏观架构如上图,核心子系统主要分为三部分(粉色部分):

(1)spider爬虫系统

(2)search&index建立索引与查询索引系统,这个系统又主要分为两部分:

  • 一部分用于生成索引数据build_index
  • 一部分用于查询索引数据search_index

(3)rank打分排序系统

核心数据主要分为两部分(紫色部分):

  • web网页库
  • index索引数据

全网搜索引擎的业务特点决定了,这是一个“写入”和“检索”完全分离的系统:

【写入】

系统组成:由spider与search&index两个系统完成

输入:站长们生成的互联网网页

输出:正排倒排索引数据

流程:如架构图中的1,2,3,4

(1)spider把互联网网页抓过来

(2)spider把互联网网页存储到网页库中(这个对存储的要求很高,要存储几乎整个“万维网”的镜像)

(3)build_index从网页库中读取数据,完成分词

(4)build_index生成倒排索引

【检索】

系统组成:由search&index与rank两个系统完成

输入:用户的搜索词

输出:排好序的第一页检索结果

流程:如架构图中的a,b,c,d

(a)search_index获得用户的搜索词,完成分词

(b)search_index查询倒排索引,获得“字符匹配”网页,这是初筛的结果

(c)rank对初筛的结果进行打分排序

(d)rank对排序后的第一页结果返回

站内搜索引擎架构与流程

做全网搜索的公司毕竟是少数,绝大部分公司要实现的其实只是一个站内搜索,站内搜索引擎的宏观架构和全网搜索引擎的宏观架构有什么异同?

以58同城100亿帖子的搜索为例,站内搜索系统架构长啥样?站内搜索流程是怎么样的?

站内搜索引擎的宏观架构

站内搜索引擎的宏观架构如上图,与全网搜索引擎的宏观架构相比,差异只有写入的地方:

(1)全网搜索需要spider要被动去抓取数据

(2)站内搜索是内部系统生成的数据,例如“发布系统”会将生成的帖子主动推给build_data系统

看似“很小”的差异,架构实现上难度却差很多:全网搜索如何“实时”发现“全量”的网页是非常困难的,而站内搜索容易实时得到全部数据。

对于spider、search&index、rank三个系统:

(1)spider和search&index是相对工程的系统

(2)rank是和业务、策略紧密、算法相关的系统,搜索体验的差异主要在此,而业务、策略的优化是需要时间积累的,这里的启示是:

a)Google的体验比Baidu好,根本在于前者rank牛逼

b)国内互联网公司(例如360)短时间要搞一个体验超越Baidu的搜索引擎,是很难的,真心需要时间的积累

提问:list1和list2,求交集怎么求?

方案一:for * for,土办法,时间复杂度O(n*n)

每个搜索词命中的网页是很多的,O(n*n)的复杂度是明显不能接受的。倒排索引是在创建之初可以进行排序预处理,问题转化成两个有序的list求交集,就方便多了。

方案二:有序list求交集,拉链法

有序list求交集,拉链法

有序集合1{1,3,5,7,8,9}

有序集合2{2,3,4,5,6,7}

两个指针指向首元素,比较元素的大小:

(1)如果相同,放入结果集,随意移动一个指针

(2)否则,移动值较小的一个指针,直到队尾

这种方法的好处是:

(1)集合中的元素最多被比较一次,时间复杂度为O(n)

(2)多个有序集合可以同时进行,这适用于多个分词的item求url_id交集

这个方法就像一条拉链的两边齿轮,一一比对就像拉链,故称为拉链法

方案三:分桶并行优化

数据量大时,url_id分桶水平切分+并行运算是一种常见的优化方法,如果能将list1和list2分成若干个桶区间,每个区间利用多线程并行求交集,各个线程结果集的并集,作为最终的结果集,能够大大的减少执行时间。

举例:

  • 有序集合1{1,3,5,7,8,9, 10,30,50,70,80,90}
  • 有序集合2{2,3,4,5,6,7, 20,30,40,50,60,70}

求交集,先进行分桶拆分:

  • 桶1的范围为[1, 9]
  • 桶2的范围为[10, 100]
  • 桶3的范围为[101, max_int]

于是:

集合1就拆分成

  • 集合a{1,3,5,7,8,9}
  • 集合b{10,30,50,70,80,90}
  • 集合c{}
  • 集合2就拆分成
  • 集合d{2,3,4,5,6,7}
  • 集合e{20,30,40,50,60,70}
  • 集合e{}

每个桶内的数据量大大降低了,并且每个桶内没有重复元素,可以利用多线程并行计算:

  • 桶1内的集合a和集合d的交集是x{3,5,7}
  • 桶2内的集合b和集合e的交集是y{30, 50, 70}
  • 桶3内的集合c和集合d的交集是z{}

最终,集合1和集合2的交集,是x与y与z的并集,即集合{3,5,7,30,50,70}

方案四:bitmap再次优化

数据进行了水平分桶拆分之后,每个桶内的数据一定处于一个范围之内,如果集合符合这个特点,就可以使用bitmap来表示集合:

bitmap再次优化

如上图,假设set1{1,3,5,7,8,9}和set2{2,3,4,5,6,7}的所有元素都在桶值[1, 16]的范围之内,可以用16个bit来描述这两个集合,原集合中的元素x,在这个16bitmap中的第x个bit为1,此时两个bitmap求交集,只需要将两个bitmap进行“与”操作,结果集bitmap的3,5,7位是1,表明原集合的交集为{3,5,7}

水平分桶,bitmap优化之后,能极大提高求交集的效率,但时间复杂度仍旧是O(n)

bitmap需要大量连续空间,占用内存较大

方案五:跳表skiplist

有序链表集合求交集,跳表是最常用的数据结构,它可以将有序集合求交集的复杂度由O(n)降至O(log(n))

跳表skiplist

  • 集合1{1,2,3,4,20,21,22,23,50,60,70}
  • 集合2{50,70}

要求交集,如果用拉链法,会发现1,2,3,4,20,21,22,23都要被无效遍历一次,每个元素都要被比对,时间复杂度为O(n),能不能每次比对“跳过一些元素”呢?

跳表就出现了:

  • 集合1{1,2,3,4,20,21,22,23,50,60,70}建立跳表时,一级只有{1,20,50}三个元素,二级与普通链表相同
  • 集合2{50,70}由于元素较少,只建立了一级普通链表

如此这般,在实施“拉链”求交集的过程中,set1的指针能够由1跳到20再跳到50,中间能够跳过很多元素,无需进行一一比对,跳表求交集的时间复杂度近似O(log(n)),这是搜索引擎中常见的算法。

五、总结

文字很多,有宏观,有细节,对于大部分不是专门研究搜索引擎的同学,记住以下几点即可:

(1)全网搜索引擎系统由spider, search&index, rank三个子系统构成

(2)站内搜索引擎与全网搜索引擎的差异在于,少了一个spider子系统

(3)spider和search&index系统是两个工程系统,rank系统的优化却需要长时间的调优和积累

(4)正排索引(forward index)是由网页url_id快速找到分词后网页内容list的过程

(5)倒排索引(inverted index)是由分词item快速寻找包含这个分词的网页list的过程

(6)用户检索的过程,是先分词,再找到每个item对应的list,最后进行集合求交集的过程

(7)有序集合求交集的方法有

  • 二重for循环法,时间复杂度O(n*n)
  • 拉链法,时间复杂度O(n)
  • 水平分桶,多线程并行
  • bitmap,大大提高运算并行度,时间复杂度O(n)
  • 跳表,时间复杂度为O(log(n))

http://zhuanlan.51cto.com/art/201702/531315.htm

猜你喜欢

转载自blog.csdn.net/nawenqiang/article/details/82588030