ZOJ3329 概率期望

/*题意:
有三个骰子,分别有k1,k2,k3个面。
每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和。
当分数大于n时结束。求游戏的期望步数。初始分数为0
分析:
假设dp[i]表示拥有分数i到游戏结束的期望步数
则 
(1):dp[i]=SUM(p[k]*dp[i+k])+p[0]*dp[0]+1;//p[k]表示增加分数为k的概率,p[0]表示分数变为0的概率
假定
(2):dp[i]=A[i]*dp[0]+B[i];
则
(3):dp[i+k]=A[i+k]*dp[0]+B[i+k];
将(3)代入(1)得:
(4):dp[i]=(SUM(p[k]*A[i+k])+p[0])*dp[0]+SUM(p[k]*B[i+k])+1;
将4与2做比较得:
A[i]=(SUM(p[k]*A[i+k])+p[0]);
B[i]=SUM(p[k]*B[i+k])+1;
当i+k>n时A[i+k]=B[i+k]=0可知
所以dp[0]=B[0]/(1-A[0])可求出
*************************************************************************
总结下这类概率DP:
既DP[i]可能由DP[i+k]和DP[i+j]需要求的比如DP[0]决定
相当于概率一直递推下去会回到原点 
比如
(1):DP[i]=a*DP[i+k]+b*DP[0]+d*DP[i+j]+c; 
但是DP[i+k]和DP[0]都是未知
这时候根据DP[i]的方程式假设一个方程式:
比如:
(2):DP[i]=A[i]*DP[i+k]+B[i]*DP[0]+C[i];
因为要求DP[0],所以当i=0的时候但是A[0],B[0],C[0]未知
对比(1)和(2)的差别 
这时候对比(1)和(2)发现两者之间的差别在于DP[i+j]
所以根据(2)求DP[i+j]然后代入(1)消除然后对比(2)就可以得到A[i],B[i],C[i]
然后视具体情况根据A[i],B[i],C[i]求得A[0],B[0],C[0]继而求DP[0] 
请看这题:http://acm.hdu.edu.cn/showproblem.php?pid=4035 
*************************************************************************
*/
#include<bits/stdc++.h>
using namespace std;
double DP[2010],A[2010],B[2010];
int main(){
	int T;
    scanf("%d",&T);
	while(T--){
		for(int i=0;i<=2000;++i)A[i]=B[i]=0;
		int n,k1,k2,k3,a,b,c;
        scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
	    double p=1.0/(k1*k2*k3);
	    for(int i=n;i>=0;--i){
	        A[i]=p;
	        B[i]=1;
	        for(int ii=1;ii<=k1;++ii){
	            for(int j=1;j<=k2;++j){
	                for(int k=1;k<=k3;++k){
	                    if(ii==a&&j==b&&k==c)continue;
	                    A[i]+=p*A[i+ii+j+k];
	                    B[i]+=p*B[i+ii+j+k];
	                }
	            }
	        }
	    }
	    printf("%.15lf\n",B[0]/(1-A[0]));
	}
}

猜你喜欢

转载自blog.csdn.net/Gipsy_Danger/article/details/83115892