Titanic_3

# 数据分析和处理
import numpy as np
import pandas as pd

# 数据可视化
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

train_df = pd.read_csv('./train.csv')
test_df = pd.read_csv('./test.csv')
combine = [train_df, test_df]
print(train_df.columns)
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
       'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
      dtype='object')
train_df.head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
train_df.info()
print('_'*40)
test_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId    891 non-null int64
Survived       891 non-null int64
Pclass         891 non-null int64
Name           891 non-null object
Sex            891 non-null object
Age            714 non-null float64
SibSp          891 non-null int64
Parch          891 non-null int64
Ticket         891 non-null object
Fare           891 non-null float64
Cabin          204 non-null object
Embarked       889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
________________________________________
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):
PassengerId    418 non-null int64
Pclass         418 non-null int64
Name           418 non-null object
Sex            418 non-null object
Age            332 non-null float64
SibSp          418 non-null int64
Parch          418 non-null int64
Ticket         418 non-null object
Fare           417 non-null float64
Cabin          91 non-null object
Embarked       418 non-null object
dtypes: float64(2), int64(4), object(5)
memory usage: 36.0+ KB
train_df.describe()
PassengerId Survived Pclass Age SibSp Parch Fare
count 891.000000 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000
mean 446.000000 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208
std 257.353842 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429
min 1.000000 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000
25% 223.500000 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400
50% 446.000000 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200
75% 668.500000 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000
max 891.000000 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200
train_df.describe(include='O')
Name Sex Ticket Cabin Embarked
count 891 891 891 204 889
unique 891 2 681 147 3
top Beane, Mrs. Edward (Ethel Clarke) male CA. 2343 B96 B98 S
freq 1 577 7 4 644
train_df[['Pclass', 'Survived']].groupby(['Pclass'],as_index=False)\
.mean().sort_values(by='Survived',ascending=False)
Pclass Survived
0 1 0.629630
1 2 0.472826
2 3 0.242363
train_df.groupby(['Sex'])['Sex','Survived'].mean()
Survived
Sex
female 0.742038
male 0.188908
train_df[['Sex', 'Survived']].groupby(['Sex'],as_index=False)\
.mean().sort_values(by='Survived',ascending=False)
Sex Survived
0 female 0.742038
1 male 0.188908
train_df[['SibSp', 'Survived']].groupby(['SibSp'],as_index=False)\
.mean().sort_values(by='Survived',ascending=False)
SibSp Survived
1 1 0.535885
2 2 0.464286
0 0 0.345395
3 3 0.250000
4 4 0.166667
5 5 0.000000
6 8 0.000000
train_df[['Parch', 'Survived']].groupby(['Parch'],as_index=False)\
.mean().sort_values(by='Survived',ascending=False)
Parch Survived
3 3 0.600000
1 1 0.550847
2 2 0.500000
0 0 0.343658
5 5 0.200000
4 4 0.000000
6 6 0.000000
g = sns.FacetGrid(train_df, col='Survived')
g.map(plt.hist, 'Age', bins=20)  #bins 直方数量
<seaborn.axisgrid.FacetGrid at 0x1a12933d30>

png

grid = sns.FacetGrid(train_df, col='Survived', row='Pclass', size=2.2, aspect=1.6)
grid.map(plt.hist, 'Age', alpha=.5, bins=20)  #bins表示直方数量, alpha表示颜色的深浅程度
grid.add_legend() # legend:图例
<seaborn.axisgrid.FacetGrid at 0x10c589f60>

png

grid = sns.FacetGrid(train_df, row='Embarked', size=2.2, aspect=1.6)
grid.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette='deep')
grid.add_legend()
/Users/shenxin/anaconda3/lib/python3.6/site-packages/seaborn/axisgrid.py:703: UserWarning: Using the pointplot function without specifying `order` is likely to produce an incorrect plot.
  warnings.warn(warning)
/Users/shenxin/anaconda3/lib/python3.6/site-packages/seaborn/axisgrid.py:708: UserWarning: Using the pointplot function without specifying `hue_order` is likely to produce an incorrect plot.
  warnings.warn(warning)





<seaborn.axisgrid.FacetGrid at 0x1a1e2e9400>

png

grid = sns.FacetGrid(train_df, row='Embarked', col='Survived', size=2.2, aspect=1.6)
grid.map(sns.barplot, 'Sex', 'Fare', alpha=.5, ci=None)
grid.add_legend()
/Users/shenxin/anaconda3/lib/python3.6/site-packages/seaborn/axisgrid.py:703: UserWarning: Using the barplot function without specifying `order` is likely to produce an incorrect plot.
  warnings.warn(warning)





<seaborn.axisgrid.FacetGrid at 0x1a1e75cc50>

png

print("Before", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape)
Before (891, 12) (418, 11) (891, 12) (418, 11)
# 无关特征删除
train_df = train_df.drop(['Ticket', 'Cabin', 'Name'], axis=1)
test_df = test_df.drop(['Ticket', 'Cabin', 'Name'], axis=1)
combine = [train_df, test_df]
print("After", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape)
After (891, 9) (418, 8) (891, 9) (418, 8)
# 分类特征转换为数值特征
for dataset in combine:
    dataset['Sex'] = dataset['Sex'].map({'female':1, 'male':0}).astype(int)
train_df.head()
PassengerId Survived Pclass Sex Age SibSp Parch Fare Embarked
0 1 0 3 0 22.0 1 0 7.2500 S
1 2 1 1 1 38.0 1 0 71.2833 C
2 3 1 3 1 26.0 0 0 7.9250 S
3 4 1 1 1 35.0 1 0 53.1000 S
4 5 0 3 0 35.0 0 0 8.0500 S
# 数值特征缺失值处理
guess_ages = np.zeros((2,3))
guess_ages
array([[0., 0., 0.],
       [0., 0., 0.]])
for dataset in combine:
    for i in range(0, 2):
        for j in range(0, 3):
            guess_df = dataset[(dataset['Sex'] == i) & \
                                   (dataset['Pclass'] == j+1)]['Age'].dropna()
            age_guess = guess_df.median()
            guess_ages[i, j] = int(age_guess/0.5 + 0.5) * 0.5

    for i in range(0, 2):
        for j in range(0, 3):
            dataset.loc[(dataset.Age.isnull()) & (dataset.Sex ==i) & ( dataset.Pclass == j+1),\
                                                                    ['Age']] = guess_ages[i, j]
train_df.head()       
PassengerId Survived Pclass Sex Age SibSp Parch Fare Embarked
0 1 0 3 0 22.0 1 0 7.2500 S
1 2 1 1 1 38.0 1 0 71.2833 C
2 3 1 3 1 26.0 0 0 7.9250 S
3 4 1 1 1 35.0 1 0 53.1000 S
4 5 0 3 0 35.0 0 0 8.0500 S
# 连续数值转为分类特征
train_df['AgeBand'] = pd.cut(train_df['Age'], 5)   # 按数值值等分,区别 qcut()按数值个数等分
train_df[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False). \
                                mean().sort_values(by='AgeBand', ascending=True)
AgeBand Survived
0 (0.34, 16.336] 0.550000
1 (16.336, 32.252] 0.336714
2 (32.252, 48.168] 0.412844
3 (48.168, 64.084] 0.434783
4 (64.084, 80.0] 0.090909
for dataset in combine:    
    dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0
    dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1
    dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2
    dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3
    dataset.loc[ dataset['Age'] > 64, 'Age']
train_df.head()
PassengerId Survived Pclass Sex Age SibSp Parch Fare Embarked AgeBand
0 1 0 3 0 1.0 1 0 7.2500 S (16.336, 32.252]
1 2 1 1 1 2.0 1 0 71.2833 C (32.252, 48.168]
2 3 1 3 1 1.0 0 0 7.9250 S (16.336, 32.252]
3 4 1 1 1 2.0 1 0 53.1000 S (32.252, 48.168]
4 5 0 3 0 2.0 0 0 8.0500 S (32.252, 48.168]
train_df = train_df.drop(['AgeBand'], axis=1)
combine = [train_df, test_df]
train_df.head()
PassengerId Survived Pclass Sex Age SibSp Parch Fare Embarked
0 1 0 3 0 1.0 1 0 7.2500 S
1 2 1 1 1 2.0 1 0 71.2833 C
2 3 1 3 1 1.0 0 0 7.9250 S
3 4 1 1 1 2.0 1 0 53.1000 S
4 5 0 3 0 2.0 0 0 8.0500 S
# 分类特征缺失值处理(只有两个,所以按最常用的填补)
freq_port = train_df.Embarked.dropna().mode()[0]   # 最常见值
for dataset in combine:
    dataset['Embarked'] = dataset['Embarked'].fillna(freq_port)

train_df[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False).mean().\
                                                sort_values(by='Survived', ascending=False)
Embarked Survived
0 C 0.553571
1 Q 0.389610
2 S 0.339009
for dataset in combine:
    dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).astype(int)
train_df.head()
PassengerId Survived Pclass Sex Age SibSp Parch Fare Embarked
0 1 0 3 0 1.0 1 0 7.2500 0
1 2 1 1 1 2.0 1 0 71.2833 1
2 3 1 3 1 1.0 0 0 7.9250 0
3 4 1 1 1 2.0 1 0 53.1000 0
4 5 0 3 0 2.0 0 0 8.0500 0
# 缺失较少,取中值
test_df['Fare'].fillna(test_df['Fare'].dropna().median(), inplace=True)   
# 将票价离散化
train_df['FareBand'] = pd.qcut(train_df['Fare'], 4)
train_df[['FareBand', 'Survived']].groupby(['FareBand'], as_index=False).mean().\
                                            sort_values(by='FareBand', ascending=True)
FareBand Survived
0 (-0.001, 7.91] 0.197309
1 (7.91, 14.454] 0.303571
2 (14.454, 31.0] 0.454955
3 (31.0, 512.329] 0.581081
for dataset in combine:
    dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0
    dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1
    dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare']   = 2
    dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3
    dataset['Fare'] = dataset['Fare'].astype(int)

train_df = train_df.drop(['FareBand'], axis=1)
combine = [train_df, test_df]
    
train_df.head(10)
PassengerId Survived Pclass Sex Age SibSp Parch Fare Embarked
0 1 0 3 0 1.0 1 0 0 0
1 2 1 1 1 2.0 1 0 3 1
2 3 1 3 1 1.0 0 0 1 0
3 4 1 1 1 2.0 1 0 3 0
4 5 0 3 0 2.0 0 0 1 0
5 6 0 3 0 1.0 0 0 1 2
6 7 0 1 0 3.0 0 0 3 0
7 8 0 3 0 0.0 3 1 2 0
8 9 1 3 1 1.0 0 2 1 0
9 10 1 2 1 0.0 1 0 2 1
# 尝试创建新特征
for dataset in combine:
    dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1

train_df[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False).mean().\
                                                sort_values(by='Survived', ascending=False)

FamilySize Survived
3 4 0.724138
2 3 0.578431
1 2 0.552795
6 7 0.333333
0 1 0.303538
4 5 0.200000
5 6 0.136364
7 8 0.000000
8 11 0.000000
for dataset in combine:
    dataset['IsAlone'] = 0
    dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1

train_df[['IsAlone', 'Survived']].groupby(['IsAlone'], as_index=False).mean()
IsAlone Survived
0 0 0.505650
1 1 0.303538
train_df = train_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
test_df = test_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
combine = [train_df, test_df]

train_df.head()
PassengerId Survived Pclass Sex Age Fare Embarked IsAlone
0 1 0 3 0 1.0 0 0 0
1 2 1 1 1 2.0 3 1 0
2 3 1 3 1 1.0 1 0 1
3 4 1 1 1 2.0 3 0 0
4 5 0 3 0 2.0 1 0 1
# 数据准备
X_train = train_df.drop(["Survived","PassengerId"], axis=1)
Y_train = train_df["Survived"]
X_test  = test_df.drop(["PassengerId"], axis=1)
X_train.shape, Y_train.shape, X_test.shape
((891, 6), (891,), (418, 6))
# machine learning
# 采用以下模型进行建模

from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import Perceptron
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
# Logistic Regression

logreg = LogisticRegression()
logreg.fit(X_train, Y_train)
Y_pred = logreg.predict(X_test)
acc_log = round(logreg.score(X_train, Y_train) * 100, 2)
acc_log
78.56
svc = SVC()
svc.fit(X_train, Y_train)
Y_pred = svc.predict(X_test)
acc_svc = round(svc.score(X_train, Y_train) * 100, 2)
acc_svc
82.15
# KNN

knn = KNeighborsClassifier(n_neighbors = 3)
knn.fit(X_train, Y_train)
Y_pred = knn.predict(X_test)
acc_knn = round(knn.score(X_train, Y_train) * 100, 2)
acc_knn
83.61
# Gaussian Naive Bayes

gaussian = GaussianNB()
gaussian.fit(X_train, Y_train)
Y_pred = gaussian.predict(X_test)
acc_gaussian = round(gaussian.score(X_train, Y_train) * 100, 2)
acc_gaussian
75.31
# Perceptron

perceptron = Perceptron()
perceptron.fit(X_train, Y_train)
Y_pred = perceptron.predict(X_test)
acc_perceptron = round(perceptron.score(X_train, Y_train) * 100, 2)
acc_perceptron
/Users/shenxin/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/stochastic_gradient.py:128: FutureWarning: max_iter and tol parameters have been added in <class 'sklearn.linear_model.perceptron.Perceptron'> in 0.19. If both are left unset, they default to max_iter=5 and tol=None. If tol is not None, max_iter defaults to max_iter=1000. From 0.21, default max_iter will be 1000, and default tol will be 1e-3.
  "and default tol will be 1e-3." % type(self), FutureWarning)





77.1
# Linear SVC

linear_svc = LinearSVC()
linear_svc.fit(X_train, Y_train)
Y_pred = linear_svc.predict(X_test)
acc_linear_svc = round(linear_svc.score(X_train, Y_train) * 100, 2)
acc_linear_svc
78.56
# Stochastic Gradient Descent

sgd = SGDClassifier()
sgd.fit(X_train, Y_train)
Y_pred = sgd.predict(X_test)
acc_sgd = round(sgd.score(X_train, Y_train) * 100, 2)
acc_sgd
/Users/shenxin/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/stochastic_gradient.py:128: FutureWarning: max_iter and tol parameters have been added in <class 'sklearn.linear_model.stochastic_gradient.SGDClassifier'> in 0.19. If both are left unset, they default to max_iter=5 and tol=None. If tol is not None, max_iter defaults to max_iter=1000. From 0.21, default max_iter will be 1000, and default tol will be 1e-3.
  "and default tol will be 1e-3." % type(self), FutureWarning)





79.24
# Decision Tree

decision_tree = DecisionTreeClassifier()
decision_tree.fit(X_train, Y_train)
Y_pred = decision_tree.predict(X_test)
acc_decision_tree = round(decision_tree.score(X_train, Y_train) * 100, 2)
acc_decision_tree
85.75
# Random Forest

random_forest = RandomForestClassifier(n_estimators=100)
random_forest.fit(X_train, Y_train)
Y_pred = random_forest.predict(X_test)
random_forest.score(X_train, Y_train)
acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2)
acc_random_forest
85.75
# 把准确率排序

models = pd.DataFrame({
    'Model': ['Support Vector Machines', 'KNN', 'Logistic Regression', 
              'Random Forest', 'Naive Bayes', 'Perceptron', 
              'Stochastic Gradient Decent', 'Linear SVC', 
              'Decision Tree'],
    'Score': [acc_svc, acc_knn, acc_log, 
              acc_random_forest, acc_gaussian, acc_perceptron, 
              acc_sgd, acc_linear_svc, acc_decision_tree]})
models.sort_values(by='Score', ascending=False)
Model Score
3 Random Forest 85.75
8 Decision Tree 85.75
1 KNN 83.61
0 Support Vector Machines 82.15
6 Stochastic Gradient Decent 79.24
2 Logistic Regression 78.56
7 Linear SVC 78.56
5 Perceptron 77.10
4 Naive Bayes 75.31

猜你喜欢

转载自blog.csdn.net/weixin_43213682/article/details/86019415