CodeForces 1098E. Fedya the Potter

题目简述:给定长度为$n \leq 5\times 10^4$的序列$a_1, a_2, \dots, a_n \leq 10^5$。将$\gcd(a_l, a_{l+1}, \dots, a_r) (1 \leq l \leq r \leq n) $从小到大排序后得到长度为$n(n+1)/2$的序列$b$。将$b_l+b_{l+1}+\dots+b_r (1 \leq l \leq r \leq n(n+1)/2)$从小到大排序后得到序列$c$。求$c$的中位数。

注:若$c$的下标从$1$开始,则$c$的中位数定义为其第$\lfloor (k+1)/2 \rfloor$个元素。

解:

code

这题可分成明显的几个步骤。

Step 1:统计不同的$\gcd$

相关题目:[NOI2012]魔幻棋盘

固定$i$,令$g(j) = \gcd\{a_i, a_{i+1}, \dots, a_j\} (1 \leq i \leq j \leq n)$,则$g(j) | a_i$且$g(j)$单调递减,从而不相同的$g(j)$的个数$= O(\log a_i)$。于是序列$b$中互不相同的元素个数只有$O(n \log V)$,其中$V = \max_i \{a_i\}$为序列$a$的最大值。

根据$g(j)$的单调性,可以通过二分法依次求出所有不同的$g(j)$及其个数。

为了能在二分时对任意$1 \leq l \leq r \leq n$,快速计算出$\gcd(a_l, a_{l+1}, \dots, a_r)$,我们需要用倍增思想预处理出$d[i][k] = \gcd (a_i, a_{i+1}, \dots, a_{i+2^k-1})$,其递推式为

$$ d[i][k] = \gcd(d[i][k-1], d[i+2^{k-1}][k-1]). $$

预处理$d[i][k]$时间复杂度为$O(n \log n \log V)$。对某个$i$,统计出所有不同的$g(j)$及其个数,需要至多使用二分法$O(\log V)$次,二分法需要二分$O(\log n)$步,每步需要计算$\gcd$的复杂度为$O(\log V)$,故总时间复杂度为$O(n \log n \log^2 V)$。

Step 2:二分$c$的中位数

相关题目:AtCoder Regular Contest 101 D. Median of Medians

使用二分法求$c$的中位数$m$,于是问题转化为统计$c$中$\geq x$的数的个数$t$。由于$c$中元素个数为$N(N+1)/2$,其中$N = n(n+1)/2$,若$t \geq \lfloor (N+1)/2 \rfloor$,则说明$x \geq m$,否则$x < m$。

记$b[v]$表示$v$在$b$中出现的次数。

猜你喜欢

转载自www.cnblogs.com/TinyWong/p/10355779.html