连续信号的脉冲分解与卷积

单位阶跃信号
在这里插入图片描述
u ( t ) = { 0 t < 0 1 t > 0 u(t)=\left\{\begin{array}{ll}{0} & {t<0} \\ {1} & {t>0}\end{array}\right.

有延迟的单位阶跃信号(左加右减)
在这里插入图片描述
u ( t t 0 ) = { 0 t < t 0 1 t > t 0 , t 0 > 0 u\left(t-t_{0}\right)=\left\{\begin{array}{ll}{0} & {t<t_{0}} \\ {1} & {t>t_{0}}\end{array}, \quad t_{0}>0\right.
在这里插入图片描述
u ( t + t 0 ) = { 0 t < t 0 1 t > t 0 , t 0 > 0 u\left(t+t_{0}\right)=\left\{\begin{array}{ll}{0} & {t<-t_{0}} \\ {1} & {t>-t_{0}}\end{array}, t_{0}>0\right.
门函数:也称窗函数

f ( t ) = u ( t + τ 2 ) u ( t τ 2 ) f(t)=u\left(t+\frac{\tau}{2}\right)-u\left(t-\frac{\tau}{2}\right)
在这里插入图片描述
分解 f ( x ) f(x)
在这里插入图片描述当t= τ \tau ,脉高: f ( τ ) f(\tau) ,脉宽: Δ τ \boldsymbol{\Delta} \tau
存在区间: u ( t τ ) u ( t τ Δ τ ) \\u(t-\tau)-u(t-\tau-\Delta \tau)
此窄脉冲可表示为: f ( τ ) [ u ( t τ ) u ( t τ Δ τ ) ] \\f(\tau)[u(t-\tau)-u(t-\tau-\Delta \tau)]
x = x=-\infty \infty f ( t ) f(t) 可表示为许多窄脉冲叠加

f ( t ) = τ = f ( τ ) [ u ( t τ ) u ( t τ Δ τ ) ] = τ = f ( τ ) [ u ( t τ ) u ( t τ Δ τ ) ] Δ τ Δ τ \begin{aligned} f(t) &=\sum_{\tau=-\infty}^{\infty} f(\tau)[u(t-\tau)-u(t-\tau-\Delta \tau)] \\ &=\sum_{\tau=-\infty}^{\infty} f(\tau) \frac{[u(t-\tau)-u(t-\tau-\Delta \tau)]}{\Delta \tau} \cdot \Delta \tau \end{aligned}

Δ τ 0 \Delta \tau \rightarrow 0

lim Δ τ 0 [ u ( t τ ) u ( t τ Δ τ ) ] Δ τ = d u ( t τ ) d t = δ ( t τ ) \lim _{\Delta \tau \rightarrow 0} \frac{[u(t-\tau)-u(t-\tau-\Delta \tau)]}{\Delta \tau}=\frac{\mathrm{d} u(t-\tau)}{\mathrm{d} t}=\delta(t-\tau)

Δ τ d τ , τ = τ = \Delta \tau \rightarrow \mathbf{d} \tau, \quad \sum_{\tau=-\infty}^{\infty} \rightarrow \int_{\tau=-\infty}^{\infty}

f ( t ) = f ( τ ) δ ( t τ ) d τ f(t)=\int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) d \tau

物理意义:

不同连续信号都可分解为冲激信号的叠加,信号不同表明它们的系数不同。

卷积
连续函数卷积的定义:(函数的脉冲分解定义一样么)
y ( t ) = x 1 ( τ ) x 2 ( t τ ) d τ y(t)=\int_{-\infty}^{\infty} x_{1}(\tau) x_{2}(t-\tau) \mathrm{d} \tau

y ( t ) = x 1 ( t ) x 2 ( t ) y(t)=x_{1}(t) * x_{2}(t)

性质:
(1)交换律
x 1 ( t ) x 2 ( t ) = x 2 ( t ) x 1 ( t ) x_{1}(t) * x_{2}(t)=x_{2}(t) * x_{1}(t)
(2)分配律
x 1 ( t ) [ x 2 ( t ) + x 3 ( t ) ] = x 1 ( t ) x 2 ( t ) + x 1 ( t ) x 3 ( t ) x_{1}(t) *\left[x_{2}(t)+x_{3}(t)\right]=x_{1}(t) * x_{2}(t)+x_{1}(t) * x_{3}(t)
(3)任意函数与冲激函数的卷积等于函数自身
x ( t ) δ ( t ) = x ( t ) x(t) * \delta(t)=x(t)

可得到:
f ( t ) = f ( t ) δ ( t ) f(t)=f(t) * \delta(t)

最后发现,信号的分解其实就是,利用冲击函数 δ ( t ) \delta(t) 的抽样性,用冲击函数对信号进行卷积。

f ( t ) = f ( τ ) δ ( t τ ) d τ f(t)=\int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) \mathrm{d} \tau

零状态响应:
f ( x ) f(x) 通过 LTI 线性时不变系统,利用特性,叠加,延时。可求得信号 f ( x ) f(x) 所产生的响应。
在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/fzf1996/article/details/91449989