CUDA:(三)threadIdx, blockIdx, blockDim, gridDim,warpsize的理解

小伙伴们看了是不是有点晕呢,其实LZ现在对于CUDA理解也是很浅显,算是看书的一个笔记吧

首先threadIdx, blockIdx, blockDim, gridDim,warpsize这五个变量都是CUDA的内建变量

gridDim: 指定grid维度,类型为dim3

blockDIm: 指定block维度,类型为dim3

blockIdx: 指定grid内block索引号,类型为uint3

threadIdx 指定block内thread索引号,类型为uint3

warpsize: 指定warp内thread数量,类型为int

dim3类型:它的定义在头文件"vector_types.h"中,看定义等同于uint3,用于指定线程或线程块的维度,在没有赋值时,初始化值为1.

struct __device_builtin__ dim3
{
    unsigned int x, y, z;
#if defined(__cplusplus)
#if __cplusplus >= 201103L
    __host__ __device__ constexpr dim3(unsigned int vx = 1, unsigned int vy = 1, unsigned int vz = 1) : x(vx), y(vy), z(vz) {}
#else
    __host__ __device__ dim3(unsigned int vx = 1, unsigned int vy = 1, unsigned int vz = 1) : x(vx), y(vy), z(vz) {}
#endif
    __host__ __device__ dim3(uint3 v) : x(v.x), y(v.y), z(v.z) {}
    __host__ __device__ operator uint3(void) { uint3 t; t.x = x; t.y = y; t.z = z; return t; }
#endif /* __cplusplus */
};

具体的定义类型有很多,详细的定义可以在头文件中自行查阅


typedef __device_builtin__ struct char1 char1;
typedef __device_builtin__ struct uchar1 uchar1;
typedef __device_builtin__ struct char2 char2;
typedef __device_builtin__ struct uchar2 uchar2;
typedef __device_builtin__ struct char3 char3;
typedef __device_builtin__ struct uchar3 uchar3;
typedef __device_builtin__ struct char4 char4;
typedef __device_builtin__ struct uchar4 uchar4;
typedef __device_builtin__ struct short1 short1;
typedef __device_builtin__ struct ushort1 ushort1;
typedef __device_builtin__ struct short2 short2;
typedef __device_builtin__ struct ushort2 ushort2;
typedef __device_builtin__ struct short3 short3;
typedef __device_builtin__ struct ushort3 ushort3;
typedef __device_builtin__ struct short4 short4;
typedef __device_builtin__ struct ushort4 ushort4;
typedef __device_builtin__ struct int1 int1;
typedef __device_builtin__ struct uint1 uint1;
typedef __device_builtin__ struct int2 int2;
typedef __device_builtin__ struct uint2 uint2;
typedef __device_builtin__ struct int3 int3;
typedef __device_builtin__ struct uint3 uint3;
typedef __device_builtin__ struct int4 int4;
typedef __device_builtin__ struct uint4 uint4;
typedef __device_builtin__ struct long1 long1;
typedef __device_builtin__ struct ulong1 ulong1;
typedef __device_builtin__ struct long2 long2;
typedef __device_builtin__ struct ulong2 ulong2;
typedef __device_builtin__ struct long3 long3;
typedef __device_builtin__ struct ulong3 ulong3;
typedef __device_builtin__ struct long4 long4;
typedef __device_builtin__ struct ulong4 ulong4;
typedef __device_builtin__ struct float1 float1;
typedef __device_builtin__ struct float2 float2;
typedef __device_builtin__ struct float3 float3;
typedef __device_builtin__ struct float4 float4;
typedef __device_builtin__ struct longlong1 longlong1;
typedef __device_builtin__ struct ulonglong1 ulonglong1;
typedef __device_builtin__ struct longlong2 longlong2;
typedef __device_builtin__ struct ulonglong2 ulonglong2;
typedef __device_builtin__ struct longlong3 longlong3;
typedef __device_builtin__ struct ulonglong3 ulonglong3;
typedef __device_builtin__ struct longlong4 longlong4;
typedef __device_builtin__ struct ulonglong4 ulonglong4;
typedef __device_builtin__ struct double1 double1;
typedef __device_builtin__ struct double2 double2;
typedef __device_builtin__ struct double3 double3;
typedef __device_builtin__ struct double4 double4;

每个grid中有多个Block,每个block有多个线程束(线程),每个线程束包含多个线程.线程束的概念用的比较少,但是要明白GPU不是一个线程一个线程处理的,而是以线程束的方式来处理的。

下图为书《 GPU编程与优化》中截图
在这里插入图片描述但是在nvidia官方文件中可以看到
在这里插入图片描述
可以看到两者的坐标并不一致,所以参考多方资料,应该是按照这种方式来进行索引的
在这里插入图片描述

可以看到一个grid有6个block,每个block有8个线程。可以按照如下的方式计算对应的索引号。

在这里插入图片描述
不同维度block和thread索引方式:

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>
#include <stdlib.h>
#include <iostream>

using namespace std;

//thread 1D
__global__ void testThread1(int *c, const int *a, const int *b)
{
    int i = threadIdx.x;
    c[i] = b[i] - a[i];
}

//thread 2D
__global__ void testThread2(int *c, const int *a, const int *b)
{
    int i = threadIdx.x + threadIdx.y*blockDim.x;
    c[i] = b[i] - a[i];
}

//thread 3D
__global__ void testThread3(int *c, const int *a, const int *b)
{
    int i = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;
    c[i] = b[i] - a[i];
}

//block 1D
__global__ void testBlock1(int *c, const int *a, const int *b)
{
    int i = blockIdx.x;
    c[i] = b[i] - a[i];
}

//block 2D
__global__ void testBlock2(int *c, const int *a, const int *b)
{
    int i = blockIdx.x + blockIdx.y*gridDim.x;
    c[i] = b[i] - a[i];
}

//block 3D
__global__ void testBlock3(int *c, const int *a, const int *b)
{
    int i = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;
    c[i] = b[i] - a[i];
}

//block-thread 1D-1D
__global__ void testBlockThread1(int *c, const int *a, const int *b)
{
    int i = threadIdx.x + blockDim.x*blockIdx.x;
    c[i] = b[i] - a[i];
}

//block-thread 1D-2D
__global__ void testBlockThread2(int *c, const int *a, const int *b)
{
    int threadId_2D = threadIdx.x + threadIdx.y*blockDim.x;
    int i = threadId_2D+ (blockDim.x*blockDim.y)*blockIdx.x;
    c[i] = b[i] - a[i];
}

//block-thread 1D-3D
__global__ void testBlockThread3(int *c, const int *a, const int *b)
{
    int threadId_3D = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;
    int i = threadId_3D + (blockDim.x*blockDim.y*blockDim.z)*blockIdx.x;
    c[i] = b[i] - a[i];
}

//block-thread 2D-1D
__global__ void testBlockThread4(int *c, const int *a, const int *b)
{
    int blockId_2D = blockIdx.x + blockIdx.y*gridDim.x;
    int i = threadIdx.x + blockDim.x*blockId_2D;
    c[i] = b[i] - a[i];
}

//block-thread 3D-1D
__global__ void testBlockThread5(int *c, const int *a, const int *b)
{
    int blockId_3D = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;
    int i = threadIdx.x + blockDim.x*blockId_3D;
    c[i] = b[i] - a[i];
}

//block-thread 2D-2D
__global__ void testBlockThread6(int *c, const int *a, const int *b)
{
    int threadId_2D = threadIdx.x + threadIdx.y*blockDim.x;
    int blockId_2D = blockIdx.x + blockIdx.y*gridDim.x;
    int i = threadId_2D + (blockDim.x*blockDim.y)*blockId_2D;
    c[i] = b[i] - a[i];
}

//block-thread 2D-3D
__global__ void testBlockThread7(int *c, const int *a, const int *b)
{
    int threadId_3D = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;
    int blockId_2D = blockIdx.x + blockIdx.y*gridDim.x;
    int i = threadId_3D + (blockDim.x*blockDim.y*blockDim.z)*blockId_2D;
    c[i] = b[i] - a[i];
}

//block-thread 3D-2D
__global__ void testBlockThread8(int *c, const int *a, const int *b)
{
    int threadId_2D = threadIdx.x + threadIdx.y*blockDim.x;
    int blockId_3D = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;
    int i = threadId_2D + (blockDim.x*blockDim.y)*blockId_3D;
    c[i] = b[i] - a[i];
}

//block-thread 3D-3D
__global__ void testBlockThread9(int *c, const int *a, const int *b)
{
    int threadId_3D = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;
    int blockId_3D = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;
    int i = threadId_3D + (blockDim.x*blockDim.y*blockDim.z)*blockId_3D;
    c[i] = b[i] - a[i];
}


void addWithCuda(int *c, const int *a, const int *b, unsigned int size)
{
    int *dev_a = 0;
    int *dev_b = 0;
    int *dev_c = 0;

    cudaSetDevice(0);

    cudaMalloc((void**)&dev_c, size * sizeof(int));
    cudaMalloc((void**)&dev_a, size * sizeof(int));
    cudaMalloc((void**)&dev_b, size * sizeof(int));

    cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
    cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);

    //testThread1<<<1, size>>>(dev_c, dev_a, dev_b);

    //uint3 s;s.x = size/5;s.y = 5;s.z = 1;
    //testThread2 <<<1,s>>>(dev_c, dev_a, dev_b);

    //uint3 s; s.x = size / 10; s.y = 5; s.z = 2;
    //testThread3<<<1, s >>>(dev_c, dev_a, dev_b);

    //testBlock1<<<size,1 >>>(dev_c, dev_a, dev_b);

    //uint3 s; s.x = size / 5; s.y = 5; s.z = 1;
    //testBlock2<<<s, 1 >>>(dev_c, dev_a, dev_b);

    //uint3 s; s.x = size / 10; s.y = 5; s.z = 2;
    //testBlock3<<<s, 1 >>>(dev_c, dev_a, dev_b);

    //testBlockThread1<<<size/10, 10>>>(dev_c, dev_a, dev_b);

    //uint3 s1; s1.x = size / 100; s1.y = 1; s1.z = 1;
    //uint3 s2; s2.x = 10; s2.y = 10; s2.z = 1;
    //testBlockThread2 << <s1, s2 >> >(dev_c, dev_a, dev_b);

    //uint3 s1; s1.x = size / 100; s1.y = 1; s1.z = 1;
    //uint3 s2; s2.x = 10; s2.y = 5; s2.z = 2;
    //testBlockThread3 << <s1, s2 >> >(dev_c, dev_a, dev_b);

    //uint3 s1; s1.x = 10; s1.y = 10; s1.z = 1;
    //uint3 s2; s2.x = size / 100; s2.y = 1; s2.z = 1;
    //testBlockThread4 << <s1, s2 >> >(dev_c, dev_a, dev_b);

    //uint3 s1; s1.x = 10; s1.y = 5; s1.z = 2;
    //uint3 s2; s2.x = size / 100; s2.y = 1; s2.z = 1;
    //testBlockThread5 << <s1, s2 >> >(dev_c, dev_a, dev_b);

    //uint3 s1; s1.x = size / 100; s1.y = 10; s1.z = 1;
    //uint3 s2; s2.x = 5; s2.y = 2; s2.z = 1;
    //testBlockThread6 << <s1, s2 >> >(dev_c, dev_a, dev_b);

    //uint3 s1; s1.x = size / 100; s1.y = 5; s1.z = 1;
    //uint3 s2; s2.x = 5; s2.y = 2; s2.z = 2;
    //testBlockThread7 << <s1, s2 >> >(dev_c, dev_a, dev_b);

    //uint3 s1; s1.x = 5; s1.y = 2; s1.z = 2;
    //uint3 s2; s2.x = size / 100; s2.y = 5; s2.z = 1;
    //testBlockThread8 <<<s1, s2 >>>(dev_c, dev_a, dev_b);

    uint3 s1; s1.x = 5; s1.y = 2; s1.z = 2;
    uint3 s2; s2.x = size / 200; s2.y = 5; s2.z = 2;
    testBlockThread9<<<s1, s2 >>>(dev_c, dev_a, dev_b);

    cudaMemcpy(c, dev_c, size*sizeof(int), cudaMemcpyDeviceToHost);

    cudaFree(dev_a);
    cudaFree(dev_b);
    cudaFree(dev_c);

    cudaGetLastError();
}


int main()
{
    const int n = 1000;

    int *a = new int[n];
    int *b = new int[n];
    int *c = new int[n];
    int *cc = new int[n];

    for (int i = 0; i < n; i++)
    {
        a[i] = rand() % 100;
        b[i] = rand() % 100;
        c[i] = b[i] - a[i];
    }

    addWithCuda(cc, a, b, n);

    FILE *fp = fopen("out.txt", "w");
    for (int i = 0; i < n; i++)
        fprintf(fp, "%d %d\n", c[i], cc[i]);
    fclose(fp);

    bool flag = true;
    for (int i = 0; i < n; i++)
    {
        if (c[i] != cc[i])
        {
            flag = false;
            break;
        }
    }

    if (flag == false)
        printf("no pass");
    else
        printf("pass");

    cudaDeviceReset();

    delete[] a;
    delete[] b;
    delete[] c;
    delete[] cc;

    getchar();
    return 0;
}

参考地址和书籍:

  1. https://www.cnblogs.com/rainbow70626/p/6498738.html?utm_source=itdadao&utm_medium=referral
  2. https://www.cnblogs.com/tiandsp/p/9458734.html
  3. GPU编程与优化
  4. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#creating-a-graph-using-stream-capture
  5. https://zhuanlan.zhihu.com/p/99947605?from_voters_page=true
发布了300 篇原创文章 · 获赞 203 · 访问量 59万+

猜你喜欢

转载自blog.csdn.net/Felaim/article/details/104119229