主流的密码学 hardness/computational 假设

1. Discrete logarithm problem

Let g g 为 a known element of prime order r r in a group (with group operation written multiplicatively). Let G = < g > G=<g> be the group generated by g g .

常用的group选择有:

  • multiplicative group of a finite field;
  • algebraic torus over a finite field;
  • elliptic curve over a finite field;
  • divisor class group of a curve over a finite field。

Discrete logarithm problem常用假设有:

  • DLP: discrete logarithm problem。常用于Schnorr signatures, DSA signatures。
    已知 h G h\in G ,找到 x x 使得 h = g x h=g^x

  • CDH: computational Diffie-Hellman problem。常用于 Diffie-Hellman key exchange and variants, Elgamal encryption and variants, BLS signatures and variants。
    已知 g a , g b G g^a,g^b\in G ,计算 g a b g^{ab}

  • SDH: static Diffie-Hellman problem。
    Fix g , g a G g,g^a\in G . Given h G h\in G ,计算 h a h^a

  • gap-CDH: Gap Diffie-Hellman problem。常用于 ECIES proof in the Random Oracle Model, Chaum undeniable signature。
    已知 g a , g b G g^a,g^b\in G ,计算 g a b g^{ab} ,when the algorithm has access to an oracle which solves the DDH problem。

  • DDH: decision Diffie-Hellman problem。常用于 Diffie-Hellman key exchange and variants, Elgamal encryption and variants.
    已知 g a , g b , h G g^a,g^b,h\in G ,判断 h = g a b h=g^{ab} 是否成立?

  • Strong-DDH: strong decision Diffie-Hellman problem
    已知 g , g a , g b , g b 1 , h G g,g^a,g^b,g^{b^{-1}},h\in G ,判断 h = g a b h=g^{ab} 是否成立?

  • sDDH: skewed decision Diffie-Hellman problem。
    Let f f 为任意的uninvertible function with domain Z r \mathbb{Z}_r 。已知 f ( a ) , g b , h G f(a),g^b,h\in G ,判断 h = g a b h=g^{ab} 是否成立?

  • PDDH: parallel decision Diffie-Hellman problem。
    已知 g x 1 , , g x n , h 1 , , h n G g^{x_1},\cdots,g^{x_n},h_1,\cdots,h_n\in G ,判断 h 1 = g x 1 x 2 , , h n 1 = g x n 1 x n , h n = g x n x 1 h_1=g^{x_1x_2},\cdots,h_{n-1}=g^{x_{n-1}x_n},h_n=g^{x_nx_1} 是否成立?

  • Square-DH: Square Diffie-Hellman problem. The best known algorithm for Square-DH is to actually solve the DLP.
    已知 g a G g^a\in G ,计算 g a 2 g^{a^2}

  • l-DHI: l-Diffie-Hellman inversion problem. The best known algorithm for l-DHI is to actually solve the DHP.
    已知 g a , g a 2 , , g a l G g^a,g^{a^2},\cdots,g^{a^l}\in G ,计算 g 1 / a g^{1/a}

  • l-DDHI: l-Decisional Diffie-Hellman inversion problem
    已知 g a , g a 2 , , g a l , v G g^a,g^{a^2},\cdots,g^{a^l},v\in G ,判断 v = g 1 / a v=g^{1/a} 是否成立?

  • REPRESENTATION: Representation problem. The best known algorithm for REPRESENTATION is to solve the DLP.
    已知 g 1 , , g k , h G g_1,\cdots,g_k,h\in G ,找到 a 1 , , a k a_1,\cdots,a_k 使得 h = g 1 a 1 g k a k h=g_1^{a_1}\cdots g_k^{a_k} 成立。

  • LRSW: LRSW Problem. The best known algorithm for LRSW is to solve the DLP.
    已知 g , g x , g y g,g^x,g^y ,已知 oracle O O (输入为 s s ,其选择一个随机值 a = g z a=g^z ,然后其输出为 ( a , a s y , a x + s x y ) (a,a^{sy},a^{x+sxy}) ),对于任意的 t t (not one of the 输入 s s )和 b 1 b\neq 1 值 计算 ( t , b , b t y , b x + t x y ) (t,b,b^{ty},b^{x+txy})

  • Linear: Linear problem。The best known algorithm for Linear is to solve the DLP。
    已知 g a , g b , g a c , g b d G g^a,g^{b},g^{ac},g^{bd}\in G ,计算 g c + d g^{c+d}

  • D-Linear1: Decision Linear problem (version 1)
    已知 g a , g b , g a c , g b d , v G g^a,g^{b},g^{ac},g^{bd},v\in G ,判断 v = g c + d v=g^{c+d} 是否成立?

  • l-SDH: l-Strong Diffie-Hellman problem
    已知 g a , g a 2 , , g a l G g^a,g^{a^2},\cdots,g^{a^l}\in G ,找到 w F q w\in F_q 并计算 g 1 / ( a + w ) g^{1/(a+w)}

  • c-DLSE: Discrete Logarithm with Short Exponents。The best known algorithm for the c-DLSE is to use the baby-step-giant-step or Pollard kangaroo algorithms for solving the DLP in a short interval. 常用于
    Gennaro pseudorandom generator。
    Let G = Z p G=\mathbb{Z}_p^* 其中 p 1 = 2 q p-1=2q p , q p,q 均为primes,let c c 为integer。已知 g x m o d    p g^x \mod p 0 x 2 c 0\leq x\leq 2^c ,求解相应的 x x 值。

  • CONF: (conference-key sharing scheme)。常用于Okamoto’s conference-key sharing scheme。
    已知 g a , g b , g a b G g^a,g^b,g^{ab}\in G ,计算 g b g^{b}

  • 3PASS: 3-Pass Message Transmission Scheme。常用于Shamir’s 3-pass message transmission scheme。
    已知 A , B , C G A,B,C\in G ,找到相应的 s s 使得 A = s a , B = s b , C = s a b A=s^a,B=s^b,C=s^{ab} 成立。

  • LUCAS: Lucas Problem。
    已知 p , z < V t ( m ) > p,z\in<V_t(m)> ,找到相应的 x x ,使得 V x ( m ) = z V_x(m)=z 成立。其中 V t ( m ) V_t(m) 的定义为: V 0 ( m ) = 2 , V 1 ( m ) = m , V t ( m ) = m V t 1 ( m ) V t 2 ( m ) V_0(m)=2,V_1(m)=m,V_t(m)=mV_{t-1}(m)-V_{t-2}(m)。

  • XLP: x-Logarithm Problem。
    对于Elliptic curve E ( F q ) E(\mathbb{F}_q) 上的任意一点 P = ( x , y ) F q 2 P=(x,y)\in\mathbb{F}_q^2 ,将 x ( P ) = x ˉ x(P)=\bar{x} 表示为 P P 点$ X坐标的二进制表示。对任意的group element g a g^a x = x ( g a ) x=x(g^a) ,是否能区分 g a g^a g x g^x

  • MDHP: Matching Diffie-Hellman Problem。常用于E-Cash。
    Let g g be a generator of group G G having order q q ,let a 0 , b 0 , a 1 , b 1 Z q a_0,b_0,a_1,b_1\in\mathbb{Z}_q and r R { 0 , 1 } r\in_R\{0,1\} 。已知 ( g a 0 , g a 0 b 0 , g a 1 , g a 1 b 1 ) (g^{a_0},g^{a_0b_0},g^{a_1},g^{a_1b_1}) ( g b r , g b 1 r ) (g^{b_r},g^{b_{1-r}}) ,找到相应的 r r

  • DDLP: Double Discrete Logarithm Problem。常用于Public verifiable secret sharing。
    Let p , q p,q 为素数且 q = ( p 1 ) / 2 q=(p-1)/2 ,设置 G G 为group of order p p with generator g g h Z p h\in\mathbb{Z}_p^* 为an element of order q q 。已知 g , h , a = g ( h x ) g,h,a=g^{(h^x)} ,求解 x x

  • rootDLP: Root of Discrete Logarithm Problem。常用于Camenisch and Stadler group signature scheme。
    已知group generator g g , positive integer e e a G a\in G ,计算 x x 使得 a = g ( x e ) a=g^{(x^e)} 成立。

  • n-M-DDH: Multiple Decision Diffie-Hellman Problem。常用于 Group key exchange。
    Let n 2 n\geq 2 D = ( g x 1 , , g x n , { g x i x j } 1 i < j n ) D=(g^{x_1},\cdots,g^{x_n},\{g^{x_ix_j}\}_{1\leq i< j\leq n}) 其中 x 1 , , x n Z r x_1,\cdots,x_n\in\mathbb{Z}_r 为随机值; D r a n d o m = ( g 1 , , g n , { g i j } 1 i < j n ) D_{random}=(g_1,\cdots,g_n,\{g_{ij}\}_{1\leq i<j\leq n}) 为a random tuple in G G 。很难区分 D D D r a n d o m D_{random}

  • l-HENSEL-DLP: l-Hensel Discrete Logarithm Problem。
    Let G G 为a subgroup or prime order r r in Z p \mathbb{Z}_p^* ,其中 p p 为a prime with polynomial binary length;Let 1 < g < p 1<g<p be an integer满足 g r 1 ( m o d    p l 1 ) , g r ≢ 1 m o d    p l ) g^r\equiv 1(\mod p^{l-1}),g^r\not\equiv 1\mod p^l) ,其中 l > 1 l>1且为整数 。已知 g x m o d    p g^x \mod p x x [ 1 , r 1 ] [1,r-1] 范围内的随机数,计算 g x m o d    p l g^x \mod p^l

  • DLP(Inn(G)): Discrete Logarithm Problem over Inner Automorphism Group。常用于MOR Public Key Cryptosystem。
    已知 ϕ , ϕ s I n n ( G ) \phi,\phi^s\in Inn(G) for s Z s\in\mathbb{Z} ,求解 s ( m o d    ϕ ) s(\mod |\phi|)

  • IE: Inverse Exponent。
    为l-DHI (l-Diffie-Hellman inversion problem) l = 1 l=1 的特例情况。

  • TDH: The Twin Diffie-Hellman Assumption。
    Let G G 为 a cyclic group with generator g g ,and of prime order q q 。定义 d h ( X , Y ) = Z dh(X,Y)=Z ,其中 X = g x , Y = g y , Z = g x y X=g^x,Y=g^y,Z=g^{xy} 。定义twin DH function 2 d h : G 3 G 2   ( X 1 , X 2 , Y ) ( d h ( X 1 , Y ) , d h ( X 2 , Y ) ) 2dh: G^3\rightarrow G^2\ (X_1,X_2,Y)\rightarrow (dh(X_1,Y),dh(X_2,Y)) 。定义相应的twin DH predicate为: 2 d h p ( X 1 , X 2 , Y ^ , Z ^ 1 , Z ^ 2 ) = 1   i f f   2 d h ( X 1 , X 2 , Y ^ ) = ( Z ^ 1 , Z ^ 2 ) 2dhp(X_1,X_2,\hat{Y},\hat{Z}_1,\hat{Z}_2)=1\ iff\ 2dh(X_1,X_2,\hat{Y})=(\hat{Z}_1,\hat{Z}_2)
    twin DH assumption是指:已知random X 1 , X 2 , Y G X_1,X_2,Y\in G ,计算 2 d h ( X 1 , X 2 , Y ) 2dh(X_1,X_2,Y) 很难。
    strong twin DH assumption是指:已知 X 1 , X 2 , Y G X_1,X_2,Y\in G along with access to a decision oracle for the predicate 2 d h p ( X 1 , X 2 , , , ) 2dhp(X_1,X_2,\cdot,\cdot,\cdot) which on input ( Y ^ , Z ^ 1 , Z ^ 2 ) (\hat{Y},\hat{Z}_1,\hat{Z}_2) returns 2 d h p ( X 1 , X 2 , Y ^ , Z ^ 1 , Z ^ 2 ) 2dhp(X_1,X_2,\hat{Y},\hat{Z}_1,\hat{Z}_2) ,计算 2 d h ( X 1 , X 2 , Y ) 2dh(X_1,X_2,Y) 很难。

  • XTR-DL: XTR discrete logarithm problem。Most protocols based on DLP can be used with XTR.
    Let T r ( g ) Tr(g) 为an XTR representation of an element of the XTR subgroup of F p 6 \mathbb{F}_{p^6}^* ,已知 t t ,求解 x x 使得 t = T r ( g x ) t=Tr(g^x) 成立。

  • XTR-DH: XTR Diffie-Hellman problem。Most protocols based on DLP can be used with XTR.
    Let T r ( g ) Tr(g) 为an XTR representation of an element of the XTR subgroup of F p 6 \mathbb{F}_{p^6}^* ,已知 t 1 , t 2 t_1,t_2 ,求解 t 3 t_3 使得 t 1 = T r ( g x ) , t 2 = T r ( g y ) , t 3 = T r ( g x y ) t_1=Tr(g^x),t_2=Tr(g^y),t_3=Tr(g^{xy}) 成立。

  • XTR-DHD: XTR decision Diffie-Hellman problem.Most protocols based on DLP can be used with XTR.
    Let T r ( g ) Tr(g) 为an XTR representation of an element of the XTR subgroup of F p 6 \mathbb{F}_{p^6}^* ,已知 t 1 = T r ( g x ) , t 2 = T r ( g y ) , t 3 t_1=Tr(g^x),t_2=Tr(g^y),t_3 ,判断 t 3 = T r ( g x y ) t_3=Tr(g^{xy}) 是否成立?

  • CL-DLP: discrete logarithms in class groups of imaginary quadratic orders。常用于key exchange。
    为standard discrete logarithm problems in a class group of imaginary quadratic orders。

  • TV-DDH: Tzeng Variant Decision Diffie-Hellman problem。常用于Conference key agreement.
    Let p , q = 2 p + 1 p,q=2p+1 均为素数,let G F p G\subseteq \mathbb{F}_p^* 为subgroup of order q q h G h\in G [ 1 , p 1 ] [1,p-1] 内的整数, h m o d    q h\mod q [ 0 , q 1 ] [0,q-1] 内整数。已知 g 1 , g 2 G g_1,g_2\in G 0 u 1 , u 2 < q 0\leq u_1,u_2<q ,取任意整数 a a ,判断 u 1 = g 1 a m o d    q , u 2 = g 2 a m o d    q u_1=g_1^a\mod q,u_2=g_2^a\mod q 是否成立?

  • n-DHE: n-Diffie-Hellman Exponent problem。常用于 Broadcast encryption, accumulators.
    对于a group G G of prime order q q ,let g i = g λ i , λ Z q g_i=g^{\lambda^i},\lambda\leftarrow \mathbb{Z}_q ,已知 { g , g 1 , g 2 , , g n , g n + 2 , , g 2 n } G 2 n \{g,g_1,g_2,\cdots,g_n,g_{n+2},\cdots,g_{2n}\}\in G^{2n} ,计算 g n + 1 g_{n+1}。

2. Factoring

  • FACTORING: integer factorisation problem
  • SQRT: square roots modulo a composite
  • CHARACTERd: character problem
  • MOVAd: character problem
  • CYCLOFACTd: factorisation in Z[θ]
  • FERMATd: factorisation in Z[θ]
  • RSAP: RSA problem
  • Strong-RSAP: strong RSA problem
  • Difference-RSAP: Difference RSA problem
  • Partial-DL-ZN2P: Partial Discrete Logarithm problem in Z∗n
  • DDH-ZN2P: Decision Diffie-Hellman problem over Z∗n
  • Lift-DH-ZN2P: Lift Diffie-Hellman problem over Z∗n
  • EPHP: Election Privacy Homomorphism problem
  • AERP: Approximate e-th root problem
  • l-HENSEL-RSAP: l-Hensel RSA
  • DSeRP: Decisional Small e-Residues in Z∗n2
  • DS2eRP: Decisional Small 2e-Residues in Z∗n2
  • DSmallRSAKP: Decisional Reciprocal RSA-Paillier in Z∗n2
  • HRP: Higher Residuosity Problem
  • ECSQRT: Square roots in elliptic curve groups over Z/nZ
  • RFP: Root Finding Problem
  • phiA: PHI-Assumption
  • C-DRSA: Computational Dependent-RSA problem
  • D-DRSA: Decisional Dependent-RSA problem
  • E-DRSA: Extraction Dependent-RSA problem
  • DCR: Decisional Composite Residuosity problem
  • CRC: Composite Residuosity Class problem
  • DCRC: Decisional Composite Residuosity Class problem
  • GenBBS: generalised Blum-Blum-Shub assumption

3. Product groups

  • co-CDH: co-Computational Diffie-Hellman Problem
  • PG-CDH: Computational Diffie-Hellman Problem for Product Groups
  • XDDH: External Decision Diffie-Hellman Problem
  • D-Linear2: Decision Linear Problem (version 2)
  • PG-DLIN: Decision Linear Problem for Product Groups
  • FSDH: Flexible Square Diffie-Hellman Problem
  • KSW1: Assumption 1 of Katz-Sahai-Waters

4. Pairings

2008年《Pairings for cryptographers》中指出,pairings over groups of known prime order 表示为:
t ^ : G 1 × G 2 G T \hat{t}:G_1\times G_2\rightarrow G_T
若其中 G 1 , G 2 , G T G_1,G_2,G_T 都具有相同的prime order l l ,则可分为以下三大类:
1)Type 1: G 1 = G 2 G_1=G_2 ;【通常使用supersingular curves,这些supersingular curves又分为两类:一类是over fields of characteristic 2 or 3 (with embedding degree 4 or 6 respectively);另一类是over fields of large prime characteristic (with embedding degree 2)。】
2)Type 2: G 1 G 2 G_1\neq G_2 ,但是存在efficiently computable homomorphism ϕ : G 2 G 1 \phi:G_2\rightarrow G_1 ;【通常使用ordinary curves,且the homomorphism from G 2 G_2 to G 1 G_1 is the trace map。】
3)Type3: G 1 G 2 G_1\neq G_2 ,且不存在efficiently computable homomorphism ϕ : G 2 G 1 \phi:G_2\rightarrow G_1 。【通常使用ordinary curves,且 G 2 G_2 为the kernel of the trace map。】

G 2 G_2 为non-cyclic group of order l 2 l^2 ,则可称为Type 4。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

具体举例为:

  • Type 1:
    在这里插入图片描述
  • Type 2:
    在这里插入图片描述
  • Type 3:
    在这里插入图片描述

log g 1 a = log g 2 b \log_{g_1}a=\log_{g_2}b ,则表示为 a b a\sim b
Pairing 相关假设有:【注意,有的assumption并不适于所有的pairing type。Certain assumptions are provably false w.r.t. certain group types.】

  • BDHP: Bilinear Diffie-Hellman Problem。
    已知 g i a , g j b g k c g_i^a,g_j^b和g_k^c ,计算 t ^ ( g 1 , g 2 ) a b c \hat{t}(g_1,g_2)^{abc}
    其中 i , j , k { 1 , 2 } i,j,k\in\{1,2\} ,对应有四种可能的组合 ( i , j , k ) { ( 1 , 1 , 1 ) , ( 1 , 1 , 2 ) , ( 1 , 2 , 2 ) , ( 2 , 2 , 2 ) } (i,j,k)\in\{(1,1,1),(1,1,2),(1,2,2),(2,2,2)\} ,也可称为 B D H P i , j , k BDHP_{i,j,k}
    – 对于Type 1 pairing,以上四种组合是等价的。
    – 对于Type 2 pairing,具有 B D H P 2 , 2 , 2 P B D H P 1 , 2 , 2 P B D H P 1 , 1 , 2 P B D H P 1 , 1 , 1 BDHP_{2,2,2}\leq_P BDHP_{1,2,2}\leq_P BDHP_{1,1,2}\leq_P BDHP_{1,1,1}
    – 对于Type 3 pairing,这四种组合have no known reductions between them。

  • DBDH: Decision Bilinear Diffie-Hellman Problem。常用于 Boneh-Franklin ID-based encryption scheme。
    已知 g i a , g j b , g k c t ^ ( g 1 , g 2 ) z g_i^a,g_j^b,g_k^c和\hat{t}(g_1,g_2)^{z} ,判断 t ^ ( g 1 , g 2 ) a b c = t ^ ( g 1 , g 2 ) z \hat{t}(g_1,g_2)^{abc}=\hat{t}(g_1,g_2)^{z} 是否成立。

  • B-DLIN: Bilinear Decision-Linear Problem
    在这里插入图片描述

  • l-BDHI: l-Bilinear Diffie-Hellman Inversion Problem
    已知 g i a , g i a 2 , g i a 3 , , g i a l g_i^{a},g_i^{a^2},g_i^{a^3},\cdots,g_i^{a^l} ,计算 t ^ ( g 1 , g 2 ) 1 / a \hat{t}(g_1,g_2)^{1/a} 。其中 i { 1 , 2 } i\in\{1,2\}

  • l-DBDHI: l-Bilinear Decision Diffie-Hellman Inversion Problem
    已知 g i a , g i a 2 , g i a 3 , , g i a l g_i^{a},g_i^{a^2},g_i^{a^3},\cdots,g_i^{a^l} v G T v\in G_T ,判断 v = t ^ ( g 1 , g 2 ) 1 / a v=\hat{t}(g_1,g_2)^{1/a} 是否成立?其中 i { 1 , 2 } i\in\{1,2\}

  • l-wBDHI: l-weak Bilinear Diffie-Hellman Inversion Problem。
    已知 g i a , g i a 2 , g i a 3 , , g i a l g_i^{a},g_i^{a^2},g_i^{a^3},\cdots,g_i^{a^l} g j b g_j^b ,计算 t ^ ( g 1 , g 2 ) a l + 1 b \hat{t}(g_1,g_2)^{a^{l+1}b} 。其中 i { 1 , 2 } i\in\{1,2\}

  • l-wDBDHI: l-weak Decisional Bilinear Diffie-Hellman Inversion Problem
    已知 g i a , g i a 2 , g i a 3 , , g i a l , g ) j b g_i^{a},g_i^{a^2},g_i^{a^3},\cdots,g_i^{a^l},g)j^b v G T v\in G_T ,判断 v = t ^ ( g 1 , g 2 ) a l + 1 b v=\hat{t}(g_1,g_2)^{a^{l+1}b} 是否成立?其中 i { 1 , 2 } i\in\{1,2\}

  • KSW2: Assumption 2 of Katz-Sahai-Waters。首次用于 the construction of a predicate encryption scheme supporting the inner product。(KATZ等人2008年论文《Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products》)
    – 运行 G ( 1 n ) G(1^n) 来获取 ( p , q , r , G , G T , t ^ ) (p,q,r,G,G_T,\hat{t})
    – 设置 N = p q r N=pqr ,let g p , g q , g r g_p,g_q,g_r 分别为 G p , G q , G r G_p,G_q,G_r 的generators;
    – 选择随机数 h G p ; Q 1 , Q 2 G q ; s , γ Z q h\in G_p;Q_1,Q_2\in G_q;s,\gamma\in\mathbb{Z}_q 以及random bit v v
    – p.p.t. adversary A A 的输入有 ( N , G , G T , t ^ ) (N,G,G_T,\hat{t}) g p , g q , g r , h , g p s , h s Q 1 , g p γ Q 2 , t ^ ( g p , h ) γ g_p,g_q,g_r,h,g_p^s,h^sQ_1,g_p^{\gamma}Q_2,\hat{t}(g_p,h)^{\gamma} ,当 v = 0 v=0 时,再给 A A 输入 t ^ ( g p , h ) γ s \hat{t}(g_p,h)^{\gamma s} ;当 v = 1 v=1 时,给 A A 的输入为a random element of G T G_T A A 的输出为a bit v v' ,且其succeed if v = v v'=v

  • MSEDH: Multi-sequence of Exponents Diffie-Hellman Assumption。用于 Delerabl´ee and Pointcheval dynamic threshold public-key encryption scheme。
    – Let B = ( p , G 1 , G 2 , G T , t ^ ( , ) ) B=(p,G_1,G_2,G_T,\hat{t}(\cdot,\cdot)) 为a bilinear map group system,let l , m , t l,m,t 为3个整数,let g 0 g_0 G 1 G_1 的generator, h 0 h_0 G 2 G_2 的generator。
    – 输入为2个random coprime polynomials f f g g ,分别具有degree l l m m ,分别具有pairwise distinct roots x 1 , , x l x_1,\cdots,x_l y 1 , , y m y_1,\cdots,y_m 。同时有 T G T T\in G_T 以及如下的exponentiations 序列:
    在这里插入图片描述
    判断 T T 是否与 t ^ ( g 0 , h 0 ) k f ( γ ) \hat{t}(g_0,h_0)^{k\cdot f(\gamma)} 相等或者与 G T G_T 中的某随机元素相同?

  • SXDH assumption: the SXDH assumption states that there are prime-order groups ( G 1 , G 2 , G T ) (G_1, G_2, G_T ) that admits a bilinear map e : G 1 × G 2 G T e : G_1 \times G_2 \rightarrow G_T such that the Decisional Diffie-Hellman (DDH) assumption holds in both G 1 G_1 and G 2 G_2 . 首次在2005年论文《Correlation-Resistant Storage via Keyword-Searchable Encryption》中提出:在这里插入图片描述
    在这里插入图片描述
    而在 2019年论文《Proofs for Inner Pairing Products and Applications》中指出,SXDH assumption仅在Type 3 pairings 下成立,因此任何基于SXDH assumption的设计均对应应采用Type 3 pairing。

  • DBP: double pairing assumption。在2016年论文《Structure-Preserving Signatures and Commitments to Group Elements》中提出。
    在这里插入图片描述

5. Lattices

5.1 Main Lattice Problems

  • SVPγp: (Approximate) Shortest vector problem
  • CVPpγ: (Approximate) Closest vector problem
  • GapSVPpγ: Decisional shortest vector problem
  • GapCVPpγ: Decisional closest vector problem

5.2 Modular Lattice Problems

  • SISp(n,m,q,β): Short integer solution problem
  • ISISp(n,m,q,β): Inhomogeneous short integer solution problem
  • LWE(n,q,φ): Learning with errors problem

5.3 Miscellaneous Lattice Problems

  • USVPp(n,γ): Approximate unique shortest vector problem
  • SBPp(n,γ): Approximate shortest basis problem
  • SLPp(n,γ): Approximate shortest length problem
  • SIVPp(n,γ): Approximate shortest independent vector problem
  • hermiteSVP: Hermite shortest vector problem
  • CRP: Covering radius problem

5.4 Ideal Lattice Problems

  • Ideal-SVPf,pγ: (Approximate) Ideal shortest vector problem / Shortest polynomial problem
  • Ideal-SISf,p q,m,β: Ideal small integer solution problem

6. Miscellaneous Problems

  • KEA1: Knowledge of Exponent assumption。参见2004年论文《The Knowledge-of-Exponent Assumptions and 3-Round Zero-Knowledge Protocols》:
    背景知识为:Let q q be a prime such that 21 + 1 21+1 is also prime, and let g g be a generator of the order q q subgroup of Z 2 q + 1 Z_{2q+1}^* 。假设输入有 q , g , g a q,g,g^a ,想要输出a pair ( C , Y ) , Y = C a (C,Y), Y=C^a 。可实现的方式之一是pick some c Z q c\in\mathbb{Z}_q ,设置 C = g c C=g^c ,则有 Y = ( g a ) c = C a Y=(g^a)^c=C^a 成立。直观上来说,KEA1假设是指这是唯一的方式。对于任意的adversary能输出such a pair的,其肯定知道相应的 c c 值使得 g c = C g^c=C 。在以下的正式定义中引入了extractor可返回相应的 c c 值:
    KEA1 (Knowledge of Exponent assumption) 的定义为: For any adversary A A that takes input q , g , g a q,g,g^a ,返回 ( C , Y ) (C,Y) 其中 Y = C a Y=C^a ,即意味着存在an extractor A A ,对于与adversary相同的输入,可返回 c c 值,使得 g c = C g^c=C

  • MQ: Multivariable Quadratic equations。多变量二次方程式。
    已知a system of m m quadratic polynomial equations in n n variables each, { y 1 = p 1 ( x 1 , , x n ) , , y m = p m ( x 1 , , x n ) } \{y_1=p_1(x_1,\cdots,x_n),\cdots,y_m=p_m(x_1,\cdots,x_n)\} ,求解 x F n x\in\mathbb{F}^n 为 in general an NP-problem。

  • CF: Given-weight codeword finding。常用于: McEliece public key cryptosystem (finding the shortest codeword).
    已知 n × k n\times k binary linear code C C 和相应的 n × ( n k ) n\times (n-k) parity check matrix H H ,求解vector x \vec{x} 使得 x H = 0 \vec{x}H=0 成立且 x x has weight w w

  • ConjSP: Braid group conjugacy search problem。
    已知 x , y B n x,y\in B_n ,求解 a B n a\in B_n 使得 a 1 x a = y a^{-1}xa=y 成立。

  • GenConjSP: Generalised braid group conjugacy search problem。用于 Public-key cryptosystem due to Ko, Lee, Cheon, Han, Kang and Park。
    已知 x , y B n x,y\in B_n ,求解 a B m , m n a\in B_m,m\leq n 使得 a 1 x a = y a^{-1}xa=y 成立。

  • ConjDecomP: Braid group conjugacy decomposition problem。
    已知 x , y B n x,y\in B_n y = b x b 1 y=bxb^{-1} for some b B n b\in B_n ,求解 a , a B m , m < n a',a''\in B_m,m<n 使得 a x a = y a'xa''=y 成立。

  • ConjDP: Braid group conjugacy decision problem。
    已知 x , y B n x,y\in B_n ,判断 x x y y 是否conjugate?即是否存在 a B n a\in B_n 使得 a 1 x a = y a^{-1}xa=y 成立?

  • DHCP: Braid group decisional Diffie-Hellman-type conjugacy problem。常用于 Public-key cryptosystem, pseudorandom number generator, pseudorandom synthesizer。
    已知 a , w l 1 a w l , w u 1 a w u a,w_l^{-1}aw_l,w_u^{-1}aw_u ,判断 x u 1 x l 1 a x l x u = w u 1 w l 1 a w l w u x_u^{-1}x_l^{-1}ax_lx_u=w_u^{-1}w_l^{-1}aw_lw_u 是否成立?for a B n , x l , w l B l a\in B_n,x_l,w_l\in B_l and x u , w u B u x_u,w_u\in B_u

  • ConjSearch: (multiple simlutaneous) Braid group conjugacy search problem。
    Let B B be a braid group, g ˉ = ( g 1 , , g k ) \bar{g}=(g_1,\cdots,g_k) and h ˉ = ( h 1 , , h k ) \bar{h}=(h_1,\cdots,h_k) be two tuples of elements of B B 。查找 x B x\in B 使得 h ˉ = x 1 g ˉ x \bar{h}=x^{-1}\bar{g}x 成立。

  • SubConjSearch: subgroup restricted Braid group conjugacy search problem。常用于Anshel- Anshel- Goldfeld key exchange protocol (AAG)。
    Let B B be a braid group, and A A a subgroup of B B generated by some { a 1 , , a r } \{a_1,\cdots,a_r\} and let g ˉ = ( g 1 , , g k ) \bar{g}=(g_1,\cdots,g_k) and h ˉ = ( h 1 , , h k ) \bar{h}=(h_1,\cdots,h_k) be two tuples of elements of B B 。查找 x A x\in A , as a word in { a 1 , , a r } \{a_1,\cdots,a_r\} ,使得 h ˉ = x 1 g ˉ x \bar{h}=x^{-1}\bar{g}x 成立。

  • LINPOLY : A linear algebra problem on polynomials。
    Let W W be a linear space of dimension n \leq n consisting of quadratic forms in n n variables X 1 , , X n X_1,\cdots,X_n 。已知 V = 1 i n X i W V=\sum_{1\leq i\leq n}X_iW ,is it possible (and how) to uniquely determine W W ? For any subspace L L' of the linear space L L generated by X 1 , , X n X_1,\cdots,X_n 。Let ( V : L ) r K [ X 1 , , X n ] : r L V (V:L')\leftarrow r\in K[X_1,\cdots,X_n]:rL'\subseteq V where K K is a finite field。
    猜想:For randomly chosen W W , the probability ρ \rho that ( V : L ) = W (V:L)=W are very close to 1 1 , when n > 2 n>2

  • HFE-DP: Hidden Field Equations Decomposition Problem。 It is the basis of the HFE crypto system.
    Let F F be a finite field of order q q and S , T A f f 1 S,T\in Aff^{-1} be two invertible, affine transformations over the vector space F n F^n 。Denote E : = G F ( q n ) E:=GF(q^n) an extension field over F F and ϕ : F n E \phi:F^n\rightarrow E the bijection between this extension field and the corresponding vector space. We have ϕ 1 ( ϕ ( a ) ) = a , a F n \phi^{-1}(\phi(a))=a,\forall a \in F^n
    Now let P ( X ) : = i , j < D , q i + q j < D C i , j X q i + q j + q i < D B i X q i + A P(X):=\sum_{i,j<D,q^i+q^j<D}C_{i,j}X^{q^i+q^j}+\sum_{q^i<D}B_iX^{q^i}+A for finite field elements C i , j , B i , A E C_{i,j},B_i,A\in E the inner polynomial. This gives the public key:
    P ( x ) : = T P S ( x ) \mathcal{P}(x):=T\circ P\circ S(x)
    or more precisely:
    P ( x ) : = T ϕ 1 P ϕ S ( x ) \mathcal{P}(x):=T\circ \phi^{-1}\circ P\circ \phi \circ S(x)
    HFE Decomposition problem是指:已知公钥 P \mathcal{P} ,找到对应的私钥 ( S , P , T ) (S,P,T)

  • HFE-SP: Hidden Field Equations Solving Problem。
    Let F F be a finite field of order q q and S , T A f f 1 S,T\in Aff^{-1} be two invertible, affine transformations over the vector space F n F^n 。Denote E : = G F ( q n ) E:=GF(q^n) an extension field over F F and ϕ : F n E \phi:F^n\rightarrow E the bijection between this extension field and the corresponding vector space. We have ϕ 1 ( ϕ ( a ) ) = a , a F n \phi^{-1}(\phi(a))=a,\forall a \in F^n
    Now let P ( X ) : = i , j < D , q i + q j < D C i , j X q i + q j + q i < D B i X q i + A P(X):=\sum_{i,j<D,q^i+q^j<D}C_{i,j}X^{q^i+q^j}+\sum_{q^i<D}B_iX^{q^i}+A for finite field elements C i , j , B i , A E C_{i,j},B_i,A\in E the inner polynomial. This gives the public key:
    P ( x ) : = T P S ( x ) \mathcal{P}(x):=T\circ P\circ S(x)
    or more precisely:
    P ( x ) : = T ϕ 1 P ϕ S ( x ) \mathcal{P}(x):=T\circ \phi^{-1}\circ P\circ \phi \circ S(x)
    Hidden Field Equations Solving Problem是指:已知 y F n y\in F^n ,找到 x F n x\in F^n 使得 y = P ( x ) y=\mathcal{P}(x) 成立。

  • MKS: Multiplicative Knapsack。Naccache and Stern 用于构建 trapdoor one-way permutation。
    已知正整数 p , c , n p,c,n 以及a set { v i } { 1 , , p 1 } n \{v_i\}\in\{1,\cdots,p-1\}^n ,找到a binary vector x x 使得 c = i = 1 n v i x i c=\prod_{i=1}^{n}v_i^{x_i} 成立。

  • BP: Balance Problem。常用于Incremental hashing。
    已知a group G G 和 a set { v i } G n \{v_i\}\in G^n ,找到disjoint subsets I , J I,J , not both empty,使得 i I v i = j J v j \bigodot_{i\in I}v_i=\bigodot_{j\in J}v_j 成立。

  • AHA: Adaptive Hardness Assumptions.
    We consider adaptive strengthenings of standard general hardness assumptions, such as the existence of one-way functions and pseudorandom generators.
    – A collection of adaptive 1 1 1-1 one-way functions is a family of 1 1 1-1 functions F n = { f s : { 0 , 1 } n { 0 , 1 } n } F_n=\{f_s:\{0,1\}^n\rightarrow \{0,1\}^n\} such that for every s s , it is hard to invert f s ( r ) f_s(r) for a random r r , even for an adversary that is granted access to an “inversion oracle” for f s f_{s'} for ever s s s'\neq s . In other words, the function f s f_s is one-way, even with access to an oracle that invert all the functions in the family。
    – A sf collection of adaptive pseudo-random generators is a family of 1 1 1-1 functions G n = { G s : { 0 , 1 } n { 0 , 1 } n } G_n=\{G_s:\{0,1\}^n\rightarrow \{0,1\}^n\} such that for every s s , it is hard to invert G s G_s is pseudo-random, even for an adversary that is granted access to an oracle whether given y y is in the range of G s G_{s'} for s s s'\neq s .

  • SPI: Sparse Polynomial Interpolation。常用于Identification scheme。参见2000年论文《AN IDENTIFICATION SCHEME BASED ON SPARSE POLYNOMIALS
    已知 A , a 0 , , a k , C 1 , , C k F q A,a_0,\cdots,a_k,C_1,\cdots,C_k\in \mathbb{F}_q ,找到 a polynomial f ( x ) F [ x ] f(x)\in\mathbb{F}[x] of degree at most q 1 q-1 使得 f ( 0 ) = A , f ( a 0 ) = 0 , f ( a i ) = C i f(0)=A,f(a_0)=0,f(a_i)=C_i for 1 i k 1\leq i\leq k and f ( x ) A f(x)-A has coefficients in { 0 , 1 } \{0,1\}

  • SPP: Self-Power Problem。若该问题可破解,在可伪造EIGamal signature scheme中类型2和4的签名。
    已知prime p p c x x m o d    p c\equiv x^x\mod p ,求解 x x

  • VDP: Vector Decomposition Problem。常用于AN IDENTIFICATION SCHEME BASED ON SPARSE POLYNOMIALS,AN IDENTIFICATION SCHEME BASED ON SPARSE POLYNOMIALS。
    已知a two-dimensional vector space V V over a finite field, with basis e 1 , e 2 e_1,e_2 ,和 a vector v v in V V 。找到 a multiple u u of e 1 e_1 使得 v u v-u is a multiple of e 2 e_2

  • 2-DL: 2-generalized Discrete Logarithm Problem。
    已知a group G G of exponent r r and order r 2 r^2 , with generators P 1 , P 2 P_1,P_2 , and an element Q Q in G G 。找到 a pair of integers ( a , b ) (a,b) 使得 Q = a P 1 + b P 2 Q=aP_1+bP_2 成立。

参考资料

[1] Can you give me a summary of cryptographic hardness assumptions?
[2] 2013年报告《Final Report on Main Computational Assumptions in Cryptography
[3] European Network of Excellence in Cryptology II
[4] 2012年 Cryptographic Primitives and Hard Problems in Cryptography wiki
[5] 2015年论文《Cryptographic Assumptions: A Position Paper

猜你喜欢

转载自blog.csdn.net/mutourend/article/details/107371612