高等代数基础(1)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Myriad_Dreamin/article/details/82346857

线性方程组和矩阵记号的基本认识

至多是一次齐次方程的方程组称为线性方程组,每个方程组可以表示为如下形式:
mj=1ajxj=bi(i=1,2,...,n)
其中将aij称为系数,将xj称为未知量,bi称为常数项。
把上面的n元线性方程组写成“表格”也就是矩阵形式:
a11a12a1mb1a21a22a2mb2an1an2anmbn
竖线左边的部分是等式左边的系数,右边的部分则是等式右边的系数。
在高中的时候,我们是通过各个方程组相加减得到方程组的解的。
对比高中的朴素求解,我们得到了对矩阵的初等行变换

1.把一行的倍数加到另一行上;
即把一个方程组两边加到另一个方程组两边。

2.互换两行的位置;
即把两个方程组的书写顺序调换。

3.用一个非零数乘以某一行。
即把某个方程组的两边同时乘以一个非零数。

于是我们可以在该矩阵中执行逐行消元操作,获得以下的矩阵:
a11a12a13a1mb10a22a23a2mb200a33a3mb3000anmbn
若能化成该形式,并且以下各过程均能执行的话,有:
xn=bnanm,xn1=bn1an1,mxnan1,m1,...,x1=bn1mj=2a1,jxja11

事实上,仅仅通过初等行变换完成线性方程组的求解的方法,叫做Gauss-Jordan算法。

观察能够获得x1,x2,,xn的条件,也就是Gauss-Jordan算法的求解过程。
1.若经过消元以后ai1,ai2,,ain为零,而bi不为零,则重新写为线性方程组我们得到0=bi,所以原方程组无解。
2.若1的情况不存在,且非零行的个数等于未知量的个数,那么我们能够进行上面的过程,因此得到唯一解。
3.若1的情况不存在,且非零行的个数少于未知量的个数,意味着有的未知量能够任意改变而同时能够通过其他元的配合使得线性方程组成立,于是该线性方程组有无穷多解。

行列式运算的基本认识

行列式是对方阵(n×n矩阵)的运算。
该定义源于线性方程组的书写。
考虑一个4元一次方程组:
{a11x1+a12x2+a13x3+a14x4=b1a21x1+a22x2+a23x3+a24x4=b2a31x1+a32x2+a33x3+a34x4=b3a41x1+a42x2+a43x3+a44x4=b4
a11a12a13a14b1a21a22a23a24b2a31a32a33a34b3a41a42a43a44b4
1a12a11a13a11a14a11b1a111a22a21a23a21a24a21b2a211a32a31a33a31a34a31b3a311a42a41a43a41a44a41b4a41
\left\lgroup \begin{array}{cccc|c} 1&\frac{a_{12}}{a_{11}}&\frac{a_{13}}{a_{11}}&\frac{a_{14}}{a_{11}}&\frac{b_{1}}{a_{11}}\\ 0&\frac{a_{22}}{a_{21}}-\frac{a_{12}}{a_{11}}&\frac{a_{23}}{a_{21}}-\frac{a_{13}}{a_{11}}&\frac{a_{24}}{a_{21}}-\frac{a_{14}}{a_{11}}&\frac{b_{2}}{a_{21}}-\frac{b_{1}}{a_{11}}\\ 0&\frac{a_{32}}{a_{31}}-\frac{a_{12}}{a_{11}}&\frac{a_{33}}{a_{31}}-\frac{a_{13}}{a_{11}}&\frac{a_{34}}{a_{31}}-\frac{a_{14}}{a_{11}}&\frac{b_{3}}{a_{31}}-\frac{b_{1}}{a_{11}} \\ 0&\frac{a_{42}}{a_{41}}-\frac{a_{12}}{a_{11}}&\frac{a_{43}}{a_{41}}-\frac{a_{13}}{a_{11}}&\frac{a_{44}}{a_{41}}-\frac{a_{14}}{a_{11}}&\frac{b_{4}}{a_{41}}-\frac{b_{1}}{a_{11}}\\ \end{array}\right\rgroup
\left\lgroup \begin{array}{cccc|c} a_{11}&a_{12}&a_{13}&a_{14}&b_1\\ 0&\frac{a_{22}a_{11}-a_{12}a_{21}}{a_{21}a_{11}}&\frac{a_{23}a_{11}-a_{13}a_{21}}{a_{21}a_{11}}&\frac{a_{24}a_{11}-a_{14}a_{21}}{a_{21}a_{11}}&\frac{b_{2}a_{11}-b_{1}a_{21}}{a_{21}a_{11}}\\ 0&\frac{a_{32}a_{11}-a_{12}a_{31}}{a_{31}a_{11}}&\frac{a_{33}a_{11}-a_{13}a_{31}}{a_{31}a_{11}}&\frac{a_{34}a_{11}-a_{14}a_{31}}{a_{31}a_{11}}&\frac{b_{3}a_{11}-b_{1}a_{31}}{a_{31}a_{11}}\\ 0&\frac{a_{42}a_{11}-a_{12}a_{41}}{a_{41}a_{11}}&\frac{a_{43}a_{11}-a_{13}a_{41}}{a_{41}a_{11}}&\frac{a_{44}a_{11}-a_{14}a_{41}}{a_{41}a_{11}}&\frac{b_{4}a_{11}-b_{1}a_{41}}{a_{41}a_{11}}\\ \end{array}\right\rgroup
暂时少写第一行第一列
\left\lgroup \begin{array}{ccc|c} 1&\frac{a_{23}a_{11}-a_{13}a_{21}}{a_{22}a_{11}-a_{12}a_{21}}&\frac{a_{24}a_{11}-a_{14}a_{21}}{a_{22}a_{11}-a_{12}a_{21}}&\frac{b_{2}a_{11}-b_{1}a_{21}}{a_{22}a_{11}-a_{12}a_{21}}\\ 1&\frac{a_{33}a_{11}-a_{13}a_{31}}{a_{32}a_{11}-a_{12}a_{31}}&\frac{a_{34}a_{11}-a_{14}a_{31}}{a_{32}a_{11}-a_{12}a_{31}}&\frac{b_{3}a_{11}-b_{1}a_{31}}{a_{32}a_{11}-a_{12}a_{31}}\\ 1&\frac{a_{43}a_{11}-a_{13}a_{41}}{a_{42}a_{11}-a_{12}a_{41}}&\frac{a_{44}a_{11}-a_{14}a_{41}}{a_{42}a_{11}-a_{12}a_{41}}&\frac{b_{4}a_{11}-b_{1}a_{41}}{a_{42}a_{11}-a_{12}a_{41}}\\ \end{array}\right\rgroup

左半截
\left\lgroup \begin{array}{ccc|c} 1&\frac{a_{23}a_{11}-a_{13}a_{21}}{a_{22}a_{11}-a_{12}a_{21}}&\frac{a_{24}a_{11}-a_{14}a_{21}}{a_{22}a_{11}-a_{12}a_{21}}&\\ 0&\frac{a_{33}a_{11}-a_{13}a_{31}}{a_{32}a_{11}-a_{12}a_{31}}-\frac{a_{23}a_{11}-a_{13}a_{21}}{a_{22}a_{11}-a_{12}a_{21}}&\frac{a_{34}a_{11}-a_{14}a_{31}}{a_{32}a_{11}-a_{12}a_{31}}-\frac{a_{24}a_{11}-a_{14}a_{21}}{a_{22}a_{11}-a_{12}a_{21}}&\\ 0&\frac{a_{43}a_{11}-a_{13}a_{41}}{a_{42}a_{11}-a_{12}a_{41}}-\frac{a_{23}a_{11}-a_{13}a_{21}}{a_{22}a_{11}-a_{12}a_{21}}&\frac{a_{44}a_{11}-a_{14}a_{41}}{a_{42}a_{11}-a_{12}a_{41}}-\frac{a_{24}a_{11}-a_{14}a_{21}}{a_{22}a_{11}-a_{12}a_{21}}&\\ \end{array}\right\rgroup
右半截
\left\lgroup \begin{array}{|c} \frac{b_{2}a_{11}-b_{1}a_{21}}{a_{22}a_{11}-a_{12}a_{21}}\\ \frac{b_{3}a_{11}-b_{1}a_{31}}{a_{32}a_{11}-a_{12}a_{31}}-\frac{b_{2}a_{11}-b_{1}a_{21}}{a_{22}a_{11}-a_{12}a_{21}}\\ \frac{b_{4}a_{11}-b_{1}a_{41}}{a_{42}a_{11}-a_{12}a_{41}}-\frac{b_{2}a_{11}-b_{1}a_{21}}{a_{22}a_{11}-a_{12}a_{21}} \end{array}\right\rgroup

\displaystyle
暂时省去第二行第二列
左半截
\left\lgroup \begin{array}{cc|} 1&\frac{(a_{34}a_{11}-a_{14}a_{31})(a_{22}a_{11}-a_{12}a_{21})-(a_{32}a_{11}-a_{12}a_{31})(a_{24}a_{11}-a_{14}a_{21})}{(a_{33}a_{11}-a_{13}a_{31})(a_{22}a_{11}-a_{12}a_{21})-(a_{32}a_{11}-a_{12}a_{31})(a_{23}a_{11}-a_{13}a_{21})}\\ 1&\frac{(a_{44}a_{11}-a_{14}a_{41})(a_{22}a_{11}-a_{12}a_{21})-(a_{42}a_{11}-a_{12}a_{41})(a_{24}a_{11}-a_{14}a_{21})}{(a_{43}a_{11}-a_{13}a_{41})(a_{22}a_{11}-a_{12}a_{21})-(a_{42}a_{11}-a_{12}a_{41})(a_{23}a_{11}-a_{13}a_{21})} \end{array}\right\rgroup
右半截
\left\lgroup \begin{array}{|c} \frac{(b_{3}a_{11}-b_{1}a_{31})(a_{22}a_{11}-a_{12}a_{21})-(a_{32}a_{11}-a_{12}a_{31})(b_{2}a_{11}-b_{1}a_{21})}{(a_{33}a_{11}-a_{13}a_{31})(a_{22}a_{11}-a_{12}a_{21})-(a_{32}a_{11}-a_{12}a_{31})(a_{23}a_{11}-a_{13}a_{21})}\\ \frac{(b_{4}a_{11}-b_{1}a_{41})(a_{22}a_{11}-a_{12}a_{21})-(a_{42}a_{11}-a_{12}a_{41})(b_{2}a_{11}-b_{1}a_{21})}{(a_{43}a_{11}-a_{13}a_{41})(a_{22}a_{11}-a_{12}a_{21})-(a_{42}a_{11}-a_{12}a_{41})(a_{23}a_{11}-a_{13}a_{21})} \end{array}\right\rgroup

第三行减去第四行,就大功告成了。
得到
\displaystyle x_4= \frac{\frac{(b_{4}a_{11}-b_{1}a_{41})(a_{22}a_{11}-a_{12}a_{21})-(a_{42}a_{11}-a_{12}a_{41})(b_{2}a_{11}-b_{1}a_{21})}{(a_{43}a_{11}-a_{13}a_{41})(a_{22}a_{11}-a_{12}a_{21})-(a_{42}a_{11}-a_{12}a_{41})(a_{23}a_{11}-a_{13}a_{21})}-\frac{(b_{3}a_{11}-b_{1}a_{31})(a_{22}a_{11}-a_{12}a_{21})-(a_{32}a_{11}-a_{12}a_{31})(b_{2}a_{11}-b_{1}a_{21})}{(a_{33}a_{11}-a_{13}a_{31})(a_{22}a_{11}-a_{12}a_{21})-(a_{32}a_{11}-a_{12}a_{31})(a_{23}a_{11}-a_{13}a_{21})}} {\frac{(a_{44}a_{11}-a_{14}a_{41})(a_{22}a_{11}-a_{12}a_{21})-(a_{42}a_{11}-a_{12}a_{41})(a_{24}a_{11}-a_{14}a_{21})}{(a_{43}a_{11}-a_{13}a_{41})(a_{22}a_{11}-a_{12}a_{21})-(a_{42}a_{11}-a_{12}a_{41})(a_{23}a_{11}-a_{13}a_{21})}-\frac{(a_{34}a_{11}-a_{14}a_{31})(a_{22}a_{11}-a_{12}a_{21})-(a_{32}a_{11}-a_{12}a_{31})(a_{24}a_{11}-a_{14}a_{21})}{(a_{33}a_{11}-a_{13}a_{31})(a_{22}a_{11}-a_{12}a_{21})-(a_{32}a_{11}-a_{12}a_{31})(a_{23}a_{11}-a_{13}a_{21})}}

考虑一个分母:
\displaystyle\frac{(a_{44}a_{11}-a_{14}a_{41})(a_{22}a_{11}-a_{12}a_{21})-(a_{42}a_{11}-a_{12}a_{41})(a_{24}a_{11}-a_{14}a_{21})}{(a_{43}a_{11}-a_{13}a_{41})(a_{22}a_{11}-a_{12}a_{21})-(a_{42}a_{11}-a_{12}a_{41})(a_{23}a_{11}-a_{13}a_{21})}-\ \displaystyle\frac{(a_{34}a_{11}-a_{14}a_{31})(a_{22}a_{11}-a_{12}a_{21})-(a_{32}a_{11}-a_{12}a_{31})(a_{24}a_{11}-a_{14}a_{21})}{(a_{33}a_{11}-a_{13}a_{31})(a_{22}a_{11}-a_{12}a_{21})-(a_{32}a_{11}-a_{12}a_{31})(a_{23}a_{11}-a_{13}a_{21})}
它等于
\displaystyle\frac{ \begin{aligned}&[(a_{44}a_{11}-a_{14}a_{41})(a_{22}a_{11}-a_{12}a_{21})-(a_{42}a_{11}-a_{12}a_{41})(a_{24}a_{11}-a_{14}a_{21})]\\ \displaystyle&[(a_{33}a_{11}-a_{13}a_{31})(a_{22}a_{11}-a_{12}a_{21})-(a_{32}a_{11}-a_{12}a_{31})(a_{23}a_{11}-a_{13}a_{21})]\\ &-\\ \displaystyle&[(a_{43}a_{11}-a_{13}a_{41})(a_{22}a_{11}-a_{12}a_{21})-(a_{42}a_{11}-a_{12}a_{41})(a_{23}a_{11}-a_{13}a_{21})]\\ \displaystyle&[(a_{34}a_{11}-a_{14}a_{31})(a_{22}a_{11}-a_{12}a_{21})-(a_{32}a_{11}-a_{12}a_{31})(a_{24}a_{11}-a_{14}a_{21})] \end{aligned}} {\begin{aligned} \displaystyle&[(a_{43}a_{11}-a_{13}a_{41})(a_{22}a_{11}-a_{12}a_{21})-(a_{42}a_{11}-a_{12}a_{41})(a_{23}a_{11}-a_{13}a_{21})]\\ \displaystyle&[(a_{34}a_{11}-a_{14}a_{31})(a_{22}a_{11}-a_{12}a_{21})-(a_{32}a_{11}-a_{12}a_{31})(a_{24}a_{11}-a_{14}a_{21})] \end{aligned}}

令其分子为
\displaystyle a_{11}^2(a_{22}a_{11}-a_{12}a_{21})\left|\begin{array}{cccc} a_{11} &a_{12}&a_{13}&a_{14}\\ a_{21} &a_{22}&a_{23}&a_{24}\\ a_{31} &a_{32}&a_{33}&a_{34}\\ a_{41} &a_{42}&a_{43}&a_{44}\\ \end{array}\right|
发现其为\displaystyle a_{11}^2(a_{22}a_{11}-a_{12}a_{21})\sum_{p_1p_2p_3p_4}(-1)^{\tau(p_1p_2p_3p_4)}a_{1,p_1}a_{2,p_2}a_{3,p_3}a_{4,p_4},其中p_1p_2p_3p_4是{1,2,3,4}的一个全排列,该式一共有4!项。
发现这样一写,原式分子通分后的分子也可以表示为
\displaystyle a_{11}^2(a_{22}a_{11}-a_{12}a_{21})\left|\begin{array}{cccc} a_{11} &a_{12}&a_{13}&b_{1}\\ a_{21} &a_{22}&a_{23}&b_{2}\\ a_{31} &a_{32}&a_{33}&b_{3}\\ a_{41} &a_{42}&a_{43}&b_{4}\\ \end{array}\right|
于是对矩阵的一种运算行列式应运而生。
\text{definition }定义n阶行列式为
\displaystyle \left| \begin{array}{cccc} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\ \end{array}\right|=\sum_{p_1p_2\dots p_n}(-1)^{\tau(p_1p_2\dots p_n)}a_{1,p_1}a_{2,p_2}\dots a_{n,p_n}
其中\tau(p_1p_2\dots p_n)是与排列有关的函数,暂时不知道它的解析式。
我觉得刚刚的内容写丑了= =。
应该这样写:
保证以下所有方程组有唯一解。
对于n元1次方程组:
n=1时,
\left\{\begin{aligned}a_{11}x_1=b_{1}\end{aligned}\right.
此时x_1=\frac{a_{11}}{b_1}.
定义|a|=a.
n=2时,
\left\{\begin{aligned}a_{11}x_1+a_{12}x_2=b_{1}\\a_{21}x_1+a_{22}x_2=b_{2}\end{aligned}\right.
于是
\left\lgroup \begin{array}{cc|c} 1&\frac{a_{12}}{a_{11}}&\frac{b_1}{a_{11}}\\ 1&\frac{a_{22}}{a_{21}}&\frac{b_2}{a_{21}}\\ \end{array}\right\rgroup
\left\lgroup \begin{array}{cc|c} 1&\frac{a_{12}}{a_{11}}&\frac{b_1}{a_{11}}\\ 0&\frac{a_{22}}{a_{21}}-\frac{a_{12}}{a_{11}}&\frac{b_2}{a_{21}}-\frac{b_1}{a_{11}}\\ \end{array}\right\rgroup
\left\lgroup \begin{array}{cc|c} a_{11}&a_{12}&b_1\\ 0&a_{11}a_{22}-a_{12}a_{21}&a_{11}b_{2}-a_{21}b_{1}\\ \end{array}\right\rgroup
\left| \begin{array}{cc} a&b\\ c&d\\ \end{array}\right|=ad-bc
\left\lgroup \begin{array}{cc|c} \left| \begin{array}{cc} a_{11}&a_{12}\\ a_{21}&a_{22}\\ \end{array}\right|&0&\left| \begin{array}{cc} b_{1}&a_{12}\\ b_{2}&a_{22}\\ \end{array}\right|\\ 0&\left| \begin{array}{cc} a_{11}&a_{12}\\ a_{21}&a_{22}\\ \end{array}\right|&\left| \begin{array}{cc} a_{11}&b_{1}\\ a_{21}&b_{2}\\ \end{array}\right|\\ \end{array}\right\rgroup
n=3时,由n=2时的结论:
\left\lgroup \begin{array}{ccc|c} a_{11}&a_{12}&a_{13}&b_{1}\\ 0&\left| \begin{array}{cc} \frac{a_{22}}{a_{21}}-\frac{a_{12}}{a_{11}}&\frac{a_{23}}{a_{21}}-\frac{a_{13}}{a_{11}}\\ \frac{a_{32}}{a_{31}}-\frac{a_{12}}{a_{11}}&\frac{a_{33}}{a_{31}}-\frac{a_{13}}{a_{11}}\\ \end{array}\right|&0&\left| \begin{array}{cc} \frac{b_{2}}{a_{21}}-\frac{b_{1}}{a_{11}}&\frac{a_{23}}{a_{21}}-\frac{a_{13}}{a_{11}}\\ \frac{b_{3}}{a_{31}}-\frac{b_{1}}{a_{11}}&\frac{a_{33}}{a_{31}}-\frac{a_{13}}{a_{11}}\\ \end{array}\right|\\ 0&0&\left| \begin{array}{cc} \frac{a_{22}}{a_{21}}-\frac{a_{13}}{a_{11}}&\frac{a_{23}}{a_{21}}-\frac{a_{12}}{a_{11}}\\ \frac{a_{32}}{a_{31}}-\frac{a_{12}}{a_{11}}&\frac{a_{33}}{a_{31}}-\frac{a_{12}}{a_{11}}\\ \end{array}\right|&\left| \begin{array}{cc} \frac{a_{22}}{a_{21}}-\frac{a_{12}}{a_{11}}&\frac{b_{2}}{a_{21}}-\frac{b_{1}}{a_{11}}\\ \frac{a_{32}}{a_{31}}-\frac{a_{12}}{a_{11}}&\frac{b_{3}}{a_{31}}-\frac{b_{1}}{a_{11}}\\ \end{array}\right|\\ \end{array}\right\rgroup
D'_n(2;2)乘以之前除去的a_1,a_2\left| \begin{array}{ccc} a&b&c\\ d&e&f\\ g&h&i\\ \end{array}\right|=g\left| \begin{array}{cc} b&c\\ e&f\\ \end{array}\right|-h\left| \begin{array}{cc} a&c\\ d&f\\ \end{array}\right|+i\left| \begin{array}{cc} a&b\\ d&e\\ \end{array}\right|
由此受到启发D_n=\sum_{i=1}^{n}a_{ni}A_{ni}
其中A_{ni}为代数余子式,为D_n的矩阵挖去ni列剩余的矩阵的行列式。显见:D_nn!项,其符号由\tau(P)决定。
(学过的人,肯定知道这个函数是逆序函数,什么时候有兴趣写吧_(:3」∠)_毕竟我已经学完了,写这个东西挺枯燥的)
行列式有很多性质:
1.记矩阵A行列交换的矩阵为A^T,称为转置矩阵,则|A^T|=|A|
2.若D_n(i;j)=kD'_n(i,j)(1\leqslant j\leqslant n),其余相同,则D_n=kD'_n.
\left|\begin{array}{cccc}...\\ka_{i1}&ka_{i2}&\dots&ka_{in}\\...\end{array}\right|=k\left|\begin{array}{cccc}...\\a_{i1}&a_{i2}&\dots&a_{in}\\...\end{array}\right|
3.若D_n(i)=D'_n(j),D_n(j)=D'_n(i),其余相同,则D_n=-D'_n
\left|\begin{array}{cccc}a_{i1}&a_{i2}&...&a_{in}\\...\\a_{j1}&a_{j2}&...&a_{jn}\end{array}\right|=\left|\begin{array}{cccc}a_{j1}&a_{j2}&...&a_{jn}\\...\\a_{i1}&a_{i2}&...&a_{in}\end{array}\right|
4.若D_n(i;j)=D'_n(i;j)+D''_n(i;j),其余相同,则D_n=D'_n+D''_n
5.若D_n(i;j)=D'_n(i;j)+D_n(k;j),其余相同,则D_n=D'_n
利用这个可以将刚才的内容推广
\displaystyle D_n=\sum_{j=1}^na_{ij}A_{ij}(1\leqslant i\leqslant n).
这个式子叫做D_n的第i行展开式。
那么思考一下,能否将D_n按多行展开呢?
\text{Laplace}定理告诉我们,
\displaystyle D_n=\sum_{I}(-1)^{\sum I_k+\sum J_k} A_{IJ}A_{U-I,U-J}.
其中U=\{1...n\},I是n-i组合,I_k是I组合的第k大数,J是n-i组合,J_k是J组合的第k大数.
思考一下I一共有\displaystyle\binom{n}{i}种,n阶行列式有n!项,所以右侧有\displaystyle\binom{n}{i}i!(n-i)!项,而对于右侧的每一项,易证其是左侧的某一项。左侧每一项各不相同,右侧每一项各不相同,这就证明了\text{Laplace}定理.

猜你喜欢

转载自blog.csdn.net/Myriad_Dreamin/article/details/82346857